Particle identification using artificial neural networks at BESⅢ

被引:2
|
作者
秦纲 [1 ]
吕军光 [1 ]
何康林 [1 ]
边渐鸣 [1 ]
曹国富 [1 ]
邓子艳 [1 ]
何苗 [1 ]
黄彬 [1 ]
季晓斌 [1 ]
李刚 [1 ]
李海波 [1 ]
李卫东 [1 ]
刘春秀 [1 ]
刘怀民 [1 ]
马秋梅 [1 ]
马想 [1 ]
冒亚军 [2 ]
毛泽普 [1 ]
莫晓虎 [1 ]
邱进发 [1 ]
孙胜森 [1 ]
孙永昭 [1 ]
王纪科 [1 ]
王亮亮 [1 ]
文硕频 [1 ]
伍灵慧 [1 ]
谢宇广 [1 ]
尤郑昀 [2 ]
杨明 [1 ]
俞国威 [1 ]
苑长征 [1 ]
袁野 [1 ]
臧石磊 [1 ]
张长春 [1 ]
张建勇 [1 ]
张令 [3 ]
张学尧 [4 ]
张瑶 [4 ]
朱永生 [1 ]
邹佳恒 [4 ]
机构
[1] Institute of High Energy Physics CAS
[2] Peking University
[3] Hunan University
[4] Shandong University
基金
中国国家自然科学基金;
关键词
artificial neural networks; particle identification; PID variables; multilayered perceptrons;
D O I
暂无
中图分类号
O572.2 [粒子物理学];
学科分类号
070202 ;
摘要
A multilayered perceptrons’ neural network technique has been applied in the particle identification at BESIII.The networks are trained in each sub-detector level.The NN output of sub-detectors can be sent to a sequential network or be constructed as PDFs for a likelihood.Good muon-ID,electron-ID and hadron-ID are obtained from the networks by using the simulated Monte Carlo samples.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Particle identification using artificial neural networks at BESIII
    Qin Gang
    Lue Jun-Guang
    He Kang-Lin
    Bian Jian-Ming
    Cao Guo-Fu
    Deng Zi-Yan
    He Miao
    Huang Bin
    Ji Xiao-Bin
    Li Gang
    Li Hai-Bo
    Li Wei-Dong
    Liu Chun-Xiu
    Liu Huai-Min
    Ma Qiu-Mei
    Ma Xiang
    Mao Ya-Jun
    Mao Ze-Pu
    Mo Xiao-Hu
    Qiu Jin-Fa
    Sun Sheng-Sen
    Sun Yong-Zhao
    Wang Ji-Ke
    Wang Liang-Liang
    Wen Shuo-Pin
    Wu Ling-Hui
    Xie Yu-Guang
    You Zheng-Yun
    Yang Ming
    Yu Guo-Wei
    Yuan Chang-Zheng
    Yuan Ye
    Zang Shi-Lei
    Zhang Chang-Chun
    Zhang Jian-Yong
    Zhang Ling
    Zhang Xue-Yao
    Zhang Yao
    Zhu Yong-Sheng
    Zou Jia-Heng
    [J]. CHINESE PHYSICS C, 2008, 32 (01) : 1 - 8
  • [2] Nematode Identification using Artificial Neural Networks
    Uhlemann, Jason
    Cawley, Oisin
    Kakouli-Duarte, Thomais
    [J]. PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON DEEP LEARNING THEORY AND APPLICATIONS (DELTA), 2020, : 13 - 22
  • [3] Particle identification at DO using neural networks
    Chakraborty, D
    [J]. ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2001, 583 : 92 - 94
  • [4] Boosted decision trees as an alternative to artificial neural networks for particle identification
    Roe, BP
    Yang, HJ
    Zhu, J
    Liu, Y
    Stancu, I
    McGregor, G
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 543 (2-3): : 577 - 584
  • [5] Load identification of the gearbox using artificial neural networks
    Tian, Y
    Zhang, ZB
    [J]. ISTM/2003: 5TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, CONFERENCE PROCEEDINGS, 2003, : 1457 - 1460
  • [6] Bridge Damage Identification Using Artificial Neural Networks
    Weinstein, Jordan C.
    Sanayei, Masoud
    Brenner, Brian R.
    [J]. JOURNAL OF BRIDGE ENGINEERING, 2018, 23 (11)
  • [7] Tracer model identification using artificial neural networks
    Akin, S
    [J]. WATER RESOURCES RESEARCH, 2005, 41 (10) : W10421 - 1
  • [8] Identification of Faults in Microgrid Using Artificial Neural Networks
    Kolla, Sri
    Onwonga, Peter
    [J]. PROCEEDINGS OF THE 2020 IEEE GREEN TECHNOLOGIES CONFERENCE (GREENTECH), 2020, : 115 - 120
  • [9] Identification of induction machines using artificial neural networks
    Martinez, LZ
    Martinez, AZ
    [J]. ISIE '97 - PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-3, 1997, : 1259 - 1264
  • [10] Thrips (Thysanoptera) identification using artificial neural networks
    Fedor, P.
    Malenovsky, I.
    Vanhara, J.
    Sierka, W.
    Havel, J.
    [J]. BULLETIN OF ENTOMOLOGICAL RESEARCH, 2008, 98 (05) : 437 - 447