On algebras of polynomially compact operators

被引:2
|
作者
Kandic, Marko [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 06期
关键词
47A46; 47B07; 47L10; 47A10; spectral radius; triangularizability; Jacobson radical; algebras of operators; polynomially compact operators; SIMULTANEOUS TRIANGULARIZATION; SPECTRAL RADIUS;
D O I
10.1080/03081087.2015.1077775
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find sufficient and necessary conditions for a triangularizable closed algebra of polynomially compact operators to be commutative modulo the radical. We also prove that an algebraic algebra of operators of a bounded degree on a Banach space is triangularizable under some mild additional conditions. As a special case we obtain a result stating that every algebraic algebra of operators of bounded degree is triangularizable whenever its commutators are nilpotent operators.
引用
收藏
页码:1185 / 1196
页数:12
相关论文
共 50 条
  • [31] REDUCTIVE ALGEBRAS CONTAINING COMPACT OPERATORS
    ROSENTHAL, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (02) : 338 - 340
  • [32] Polynomially rich algebras
    Idziak, PM
    Slomczynska, K
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 156 (01) : 33 - 68
  • [33] On Compact and Fredholm Operators over C*-algebras and a New Topology in the Space of Compact Operators
    Irmatov, Anwar A.
    Mishchenko, Alexandr S.
    JOURNAL OF K-THEORY, 2008, 2 (02) : 329 - 351
  • [34] Differential Banach *-algebras of compact operators associated with symmetric operators
    Kissin, E
    Shulman, VS
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (01) : 1 - 29
  • [35] Polynomially bounded operators
    Davidson, KR
    Paulsen, VI
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 487 : 153 - 170
  • [36] Polynomially normal operators
    Dragan S. Djordjević
    Muneo Chō
    Dijana Mosić
    Annals of Functional Analysis, 2020, 11 : 493 - 504
  • [37] Polynomially EP operators
    Dijana Mosić
    Miloš D. Cvetković
    Aequationes mathematicae, 2022, 96 : 1075 - 1087
  • [38] Polynomially normal operators
    Djordjevic, Dragan S.
    Cho, Muneo
    Mosic, Dijana
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 493 - 504
  • [39] On Polynomially Riesz Operators
    Zlatanovic, Snezana C. Zivkovic
    Djordjevic, Dragan S.
    Harte, Robin E.
    Duggal, Bhagwati P.
    FILOMAT, 2014, 28 (01) : 197 - 205
  • [40] Polynomially continuous operators
    Joaquín M. Gutiérrez
    José G. Llavona
    Israel Journal of Mathematics, 1997, 102 : 179 - 187