Machine learning for detection of interictal epileptiform discharges

被引:41
|
作者
Lourenco, Catarina da Silva [1 ]
Tjepkema-Cloostermans, Marleen C. [1 ,2 ]
van Putten, Michel J. A. M. [1 ,2 ]
机构
[1] Univ Twente, Tech Med Ctr, Inst Tech Med, Dept Clin Neurophysiol, Enschede, Netherlands
[2] Med Spectrum Twente MST, Neuroctr, Enschede, Netherlands
关键词
Electroencephalogram; Interictal epileptiform discharges; Automated detection; Machine learning; Deep learning; Convolutional neural networks; ARTIFICIAL NEURAL-NETWORK; EEG SPIKE DETECTION; AUTOMATIC DETECTION; WAVELET TRANSFORMS; SIGNALS; SYSTEM; CLASSIFICATION; RECOGNITION; EPILEPSY; EVENTS;
D O I
10.1016/j.clinph.2021.02.403
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The electroencephalogram (EEG) is a fundamental tool in the diagnosis and classification of epilepsy. In particular, Interictal Epileptiform Discharges (IEDs) reflect an increased likelihood of seizures and are routinely assessed by visual analysis of the EEG. Visual assessment is, however, time consuming and prone to subjectivity, leading to a high misdiagnosis rate and motivating the development of automated approaches. Research towards automating IED detection started 45 years ago. Approaches range from mimetic methods to deep learning techniques. We review different approaches to IED detection, dis-cussing their performance and limitations. Traditional machine learning and deep learning methods have yielded the best results so far and their application in the field is still growing. Standardization of datasets and outcome measures is necessary to compare models more objectively and decide which should be implemented in a clinical setting. (c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:1433 / 1443
页数:11
相关论文
共 50 条
  • [1] Deep learning for robust detection of interictal epileptiform discharges
    Geng, David
    Alkhachroum, Ayham
    Melo Bicchi, Manuel A.
    Jagid, Jonathan R.
    Cajigas, Iahn
    Chen, Zhe Sage
    [J]. JOURNAL OF NEURAL ENGINEERING, 2021, 18 (05)
  • [2] A fast machine learning approach to facilitate the detection of interictal epileptiform discharges in the scalp electroencephalogram
    Bagheri, Elham
    Jin, Jing
    Dauwels, Justin
    Cash, Sydney
    Westover, M. Brandon
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2019, 326
  • [3] Detection of Interictal epileptiform discharges with semi-supervised deep learning
    de Sousa, Ana Maria Amaro
    van Putten, Michel J. A. M.
    van den Berg, Stephanie
    Haeri, Maryam Amir
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [4] Transfer Learning of EEG for Analysis of Interictal Epileptiform Discharges
    Took, C. Cheong
    Alty, S.
    Martin-Lopez, D.
    Valentin, A.
    Alarcon, G.
    Sanei, S.
    [J]. 2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [5] Predicting upcoming interictal epileptiform discharges with deep learning
    Norris, J.
    Smith, S.
    Chari, A.
    Cooray, G.
    Tisdall, M.
    Friston, K.
    Rosch, R.
    [J]. EPILEPSIA, 2023, 64 : 456 - 456
  • [6] Towards the automated detection of interictal epileptiform discharges with magnetoencephalography
    Fernandez-Martin, Raquel
    Feys, Odile
    Juvene, Elodie
    Aeby, Alec
    Urbain, Charline
    De Tiege, Xavier
    Wens, Vincent
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2024, 403
  • [7] On the nature of interictal epileptiform discharges
    Bautista, Ramon Edmundo D.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2013, 124 (11) : 2073 - 2074
  • [8] Interictal epileptiform discharges and asystole
    Nei, Maromi
    Zangaladze, Andro T.
    Sharan, Ashwini
    Ho, Reginald T.
    [J]. EPILEPSY RESEARCH, 2011, 93 (2-3) : 204 - 207
  • [9] Interictal epileptiform discharges and cognition
    Sanchez Fernandez, Ivan
    Loddenkemper, Tobias
    [J]. DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2017, 59 (01): : 13 - 14
  • [10] AiED: Artificial intelligence for the detection of intracranial interictal epileptiform discharges
    Quon, Robert J.
    Meisenhelter, Stephen
    Camp, Edward J.
    Testorf, Markus E.
    Song, Yinchen
    Song, Qingyuan
    Culler, George W.
    Moein, Payam
    Jobst, Barbara C.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2022, 133 : 1 - 8