Machine learning for detection of interictal epileptiform discharges

被引:41
|
作者
Lourenco, Catarina da Silva [1 ]
Tjepkema-Cloostermans, Marleen C. [1 ,2 ]
van Putten, Michel J. A. M. [1 ,2 ]
机构
[1] Univ Twente, Tech Med Ctr, Inst Tech Med, Dept Clin Neurophysiol, Enschede, Netherlands
[2] Med Spectrum Twente MST, Neuroctr, Enschede, Netherlands
关键词
Electroencephalogram; Interictal epileptiform discharges; Automated detection; Machine learning; Deep learning; Convolutional neural networks; ARTIFICIAL NEURAL-NETWORK; EEG SPIKE DETECTION; AUTOMATIC DETECTION; WAVELET TRANSFORMS; SIGNALS; SYSTEM; CLASSIFICATION; RECOGNITION; EPILEPSY; EVENTS;
D O I
10.1016/j.clinph.2021.02.403
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The electroencephalogram (EEG) is a fundamental tool in the diagnosis and classification of epilepsy. In particular, Interictal Epileptiform Discharges (IEDs) reflect an increased likelihood of seizures and are routinely assessed by visual analysis of the EEG. Visual assessment is, however, time consuming and prone to subjectivity, leading to a high misdiagnosis rate and motivating the development of automated approaches. Research towards automating IED detection started 45 years ago. Approaches range from mimetic methods to deep learning techniques. We review different approaches to IED detection, dis-cussing their performance and limitations. Traditional machine learning and deep learning methods have yielded the best results so far and their application in the field is still growing. Standardization of datasets and outcome measures is necessary to compare models more objectively and decide which should be implemented in a clinical setting. (c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:1433 / 1443
页数:11
相关论文
共 50 条
  • [31] Mutual information analysis and detection of interictal morphological differences in interictal epileptiform discharges of patients with partial epilepsies
    Varma, NK
    Kushwaha, R
    Beydoun, A
    Williams, WJ
    Drury, I
    [J]. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1997, 103 (04): : 426 - 433
  • [32] iEDeaL: A Deep Learning Framework for Detecting Highly Imbalanced Interictal Epileptiform Discharges
    Wang, Qitong
    Whitmarsh, Stephen
    Navarro, Vincent
    Palpanas, Themis
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 16 (03): : 480 - 490
  • [33] Detection of Intracranial Signatures of Interictal Epileptiform Discharges from Concurrent Scalp EEG
    Spyrou, Loukianos
    Martin-Lopez, David
    Valentin, Antonio
    Alarcon, Gonzalo
    Sanei, Saeid
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2016, 26 (04)
  • [34] Sensor selection and miniaturization limits for detection of interictal epileptiform discharges with wearable EEG
    Dan, Jonathan
    Foged, Mette Thrane
    Vandendriessche, Benjamin
    Van Paesschen, Wim
    Bertrand, Alexander
    [J]. JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [35] Deep learning-based automated detection and multiclass classification of focal interictal epileptiform discharges in scalp electroencephalograms
    Chung, Yoon Gi
    Lee, Woo-Jin
    Na, Sung Min
    Kim, Hunmin
    Hwang, Hee
    Yun, Chang-Ho
    Kim, Ki Joong
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [36] Deep learning-based automated detection and multiclass classification of focal interictal epileptiform discharges in scalp electroencephalograms
    Yoon Gi Chung
    Woo-Jin Lee
    Sung Min Na
    Hunmin Kim
    Hee Hwang
    Chang-Ho Yun
    Ki Joong Kim
    [J]. Scientific Reports, 13
  • [37] Delineating the dynamics of ictogenic and irritative zones using machine learning of interictal epileptiform discharges in paediatric stereo-electroencephalography
    Smith, S.
    Friston, K.
    Cooray, G.
    Tisdall, M.
    Rosch, R.
    [J]. EPILEPSIA, 2023, 64 : 254 - 255
  • [38] The Role of Interictal Epileptiform Discharges in Epilepsy Surgery Outcome
    Habibabadi, Jafar Mehvari
    Zare, Mohamad
    Tabrizi, Nasim
    [J]. INTERNATIONAL JOURNAL OF PREVENTIVE MEDICINE, 2019, 10
  • [39] Effect of sleep stages on bitemporal interictal epileptiform discharges
    Belyakova-Bodina, Alexandra
    Abramova, Anna
    Dolgova, Snezhana
    Broutian, Amayak
    [J]. EPILEPSIA, 2021, 62 : 128 - 129
  • [40] State-Dependent Effect of Interictal Epileptiform Discharges
    Chvojka, J.
    Kudlacek, J.
    Otahal, J.
    Jiruska, P.
    [J]. EPILEPSIA, 2018, 59 : S23 - S23