Towards the automated detection of interictal epileptiform discharges with magnetoencephalography

被引:2
|
作者
Fernandez-Martin, Raquel [1 ,6 ]
Feys, Odile [1 ,2 ]
Juvene, Elodie [3 ]
Aeby, Alec [3 ]
Urbain, Charline [1 ,4 ]
De Tiege, Xavier [1 ,5 ]
Wens, Vincent [1 ,5 ]
机构
[1] Univ Libre Bruxelles ULB, ULB Neurosci Inst UNI, Lab Neuroanat & Neuroimagerie Translat LN2T, Brussels, Belgium
[2] Univ libre Bruxelles ULB, Hop Univ Bruxelles HUB, Hop Erasme, Dept Neurol, Brussels, Belgium
[3] Univ Libre Bruxelles ULB, Hop Univ Bruxelles HUB, Dept Radiat Oncol, B-1070 Brussels, Belgium
[4] Univ Libre Bruxelles ULB, Ctr Res Cognit & Neurosci CRCN, Neuropsychol & Funct Neuroimaging Res Unit UR2NF, UNI ULB Neurosci Inst, Brussels, Belgium
[5] Univ Libre Bruxelles ULB, Hop Univ Bruxelles HUB, Hop Erasme, Dept Translat Neuroimaging, Brussels, Belgium
[6] HUB Hop Erasme, Dept Translat Neuroimaging, 808 Route Lennik, B-1070 Brussels, Belgium
关键词
Interictal epileptiform; Epilepsy; Automated detection; Magnetoencephalography; Hidden Markov Modeling; Independent Components Analysis; EPILEPTOGENIC ZONE; MEG; EPILEPSY; LOCALIZATION; EEG; NETWORKS; ILAE;
D O I
10.1016/j.jneumeth.2023.110052
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The analysis of clinical magnetoencephalography (MEG) in patients with epilepsy traditionally relies on visual identification of interictal epileptiform discharges (IEDs), which is time consuming and dependent on subjective criteria. New Method: Here, we explore the ability of Independent Components Analysis (ICA) and Hidden Markov Modeling (HMM) to automatically detect and localize IEDs. We tested our pipelines on resting-state MEG recordings from 10 school-aged children with (multi)focal epilepsy. Results: In focal epilepsy patients, both pipelines successfully detected visually identified IEDs, but also revealed unidentified low-amplitude IEDs. Success was more mitigated in patients with multifocal epilepsy, as our automated pipeline missed IED activity associated with some foci-an issue that could be alleviated by post-hoc manual selection of epileptiform ICs or HMM states. Comparison with existing methods: We compared our results with visual IED detection by an experienced clinical magnetoencephalographer, getting heightened sensitivity and requiring minimal input from clinical practitioners. Conclusions: IED detection based on ICA or HMM represents an efficient way to identify IED localization and timing. The development of these automatic IED detection algorithms provide a step forward in clinical MEG practice by decreasing the duration of MEG analysis and enhancing its sensitivity.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Towards the automated detection of interictal epileptiform discharges with magnetoencephalography (vol 403, 110052, 2024)
    Fernandez-Martin, Raquel
    Feys, Odile
    Juvene, Elodie
    Aeby, Alec
    Urbain, Charline
    De Tiege, Xavier
    Wens, Vincent
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2024, 405
  • [2] Comparison of Three Methods for Localizing Interictal Epileptiform Discharges With Magnetoencephalography
    Shiraishi, Hideaki
    Ahlfors, Seppo P.
    Stufflebeam, Steven M.
    Knake, Susanne
    Larsson, Pal G.
    Haemaelaeinen, Matti S.
    Takano, Kyoko
    Okajima, Maki
    Hatanaka, Keisaku
    Saitoh, Shinji
    Dale, Anders M.
    Halgren, Eric
    [J]. JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2011, 28 (05) : 431 - 440
  • [3] Machine learning for detection of interictal epileptiform discharges
    Lourenco, Catarina da Silva
    Tjepkema-Cloostermans, Marleen C.
    van Putten, Michel J. A. M.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2021, 132 (07) : 1433 - 1443
  • [4] Automated Detection of Interictal Epileptiform Discharges from Scalp Electroencephalograms by Convolutional Neural Networks
    Thomas, John
    Jin, Jing
    Thangavel, Prasanth
    Bagheri, Elham
    Yuvaraj, Rajamanickam
    Dauwels, Justin
    Rathakrishnan, Rahul
    Halford, Jonathan J.
    Cash, Sydney S.
    Westover, Brandon
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2020, 30 (11)
  • [5] Deep learning for robust detection of interictal epileptiform discharges
    Geng, David
    Alkhachroum, Ayham
    Melo Bicchi, Manuel A.
    Jagid, Jonathan R.
    Cajigas, Iahn
    Chen, Zhe Sage
    [J]. JOURNAL OF NEURAL ENGINEERING, 2021, 18 (05)
  • [6] On the nature of interictal epileptiform discharges
    Bautista, Ramon Edmundo D.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2013, 124 (11) : 2073 - 2074
  • [7] Interictal epileptiform discharges and asystole
    Nei, Maromi
    Zangaladze, Andro T.
    Sharan, Ashwini
    Ho, Reginald T.
    [J]. EPILEPSY RESEARCH, 2011, 93 (2-3) : 204 - 207
  • [8] Interictal epileptiform discharges and cognition
    Sanchez Fernandez, Ivan
    Loddenkemper, Tobias
    [J]. DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2017, 59 (01): : 13 - 14
  • [9] AiED: Artificial intelligence for the detection of intracranial interictal epileptiform discharges
    Quon, Robert J.
    Meisenhelter, Stephen
    Camp, Edward J.
    Testorf, Markus E.
    Song, Yinchen
    Song, Qingyuan
    Culler, George W.
    Moein, Payam
    Jobst, Barbara C.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2022, 133 : 1 - 8
  • [10] The BOLD response to interictal epileptiform discharges
    Bénar, CG
    Gross, DW
    Wang, YH
    Petre, V
    Pike, B
    Dubeau, FO
    Gotman, J
    [J]. NEUROIMAGE, 2002, 17 (03) : 1182 - 1192