Homoclinic bifurcation of a ratio-dependent predator-prey system with impulsive harvesting

被引:14
|
作者
Wei, Chunjin [1 ]
Liu, Junnan [1 ]
Chen, Lansun [2 ]
机构
[1] Jimei Univ, Sci Coll, Xiamen 361021, Fujian, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
Allee effect; Successor function; Order-1 periodic solution; Order-1 homoclinic cycle; Homoclinic bifurcation; PERIODIC-SOLUTION; QUALITATIVE-ANALYSIS; BIOECONOMIC MODEL; CHEMOSTAT MODEL; DYNAMICS;
D O I
10.1007/s11071-017-3567-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we investigate a ratio-dependent prey-predator model with state-dependent impulsive harvesting where the prey growth rate is subject to a strong Allee effect. The existence of order-1 homoclinic cycle is obtained, and choosing as a control parameter, the existence, uniqueness and stability of order-1 periodic solution of the system are discussed by means of the geometry theory of semi-continuous dynamic system. We also investigate that system exhibits the phenomenon of homoclinic bifurcation about parameter . Moreover, the numerical simulations are provided to show the main results. The used methods are intuitive to prove the existence of order-1 periodic solution and homoclinic bifurcation.
引用
收藏
页码:2001 / 2012
页数:12
相关论文
共 50 条
  • [1] Homoclinic bifurcation of a ratio-dependent predator–prey system with impulsive harvesting
    Chunjin Wei
    Junnan Liu
    Lansun Chen
    [J]. Nonlinear Dynamics, 2017, 89 : 2001 - 2012
  • [2] Heteroclinic bifurcation in a ratio-dependent predator-prey system
    Tang, YL
    Zhang, WN
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 50 (06) : 699 - 712
  • [3] An impulsive ratio-dependent predator-prey system with diffusion
    Akhmet, M. U.
    Beklioglu, M.
    Ergenc, T.
    Tkachenko, V. I.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) : 1255 - 1267
  • [4] Heteroclinic bifurcation in a ratio-dependent predator-prey system
    Yilei Tang
    Weinian Zhang
    [J]. Journal of Mathematical Biology, 2005, 50 : 699 - 712
  • [5] Stability and bifurcation in a delayed ratio-dependent predator-prey system
    Xiao, DM
    Li, WX
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 : 205 - 220
  • [6] Bifurcation and stability analysis of a ratio-dependent predator-prey model with predator harvesting rate
    Lajmiri, Z.
    Ghaziani, R. Khoshsiar
    Orak, Iman
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 106 : 193 - 200
  • [7] The Stability and Bifurcation in a Ratio-Dependent Predator-Prey Model
    Guo, Shuang
    Zhang, Ling
    Zhao, Dongxia
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES (ICCIS 2014), 2014, : 1003 - 1008
  • [8] Dynamics in a ratio-dependent predator-prey model with predator harvesting
    Xiao, Dongmei
    Li, Wenxia
    Han, Maoan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) : 14 - 29
  • [9] Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system
    Wan-Yong Wang · Li-Jun Pei School of Aerospace Engineering and Applied Mechanics
    [J]. Acta Mechanica Sinica, 2011, 27 (02) : 285 - 296
  • [10] Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting
    Gao, Xiaoyan
    Ishag, Sadia
    Fu, Shengmao
    Li, Wanjun
    Wang, Weiming
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 51