Heteroclinic bifurcation in a ratio-dependent predator-prey system

被引:35
|
作者
Tang, YL [1 ]
Zhang, WN [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
关键词
predator-prey system; heteroclinic loop; bifurcation; hamiltonian system; degenerate equilibrium;
D O I
10.1007/s00285-004-0307-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we study the heteroclinic bifurcation in a general ratio-dependent predator-prey system. Based on the results of heteroclinic loop obtained in [J. Math. Biol. 43(2001): 221-246], we give parametric conditions of the existence of the heteroclinic loop analytically and describe the heteroclinic bifurcation surface in the parameter space, so as to answer further the open problem raised in [J. Math. Biol. 42(2001): 489-506].
引用
收藏
页码:699 / 712
页数:14
相关论文
共 50 条
  • [1] Heteroclinic bifurcation in a ratio-dependent predator-prey system
    Yilei Tang
    Weinian Zhang
    [J]. Journal of Mathematical Biology, 2005, 50 : 699 - 712
  • [2] Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system
    Li, Bingtuan
    Kuang, Yang
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) : 1453 - 1464
  • [3] Stability and bifurcation in a delayed ratio-dependent predator-prey system
    Xiao, DM
    Li, WX
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 : 205 - 220
  • [4] Computing the heteroclinic bifurcation curves in predator-prey systems with ratio-dependent functional response
    Ruan, Shigui
    Tang, Yilei
    Zhang, Weinian
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (02) : 223 - 241
  • [5] The Stability and Bifurcation in a Ratio-Dependent Predator-Prey Model
    Guo, Shuang
    Zhang, Ling
    Zhao, Dongxia
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES (ICCIS 2014), 2014, : 1003 - 1008
  • [6] Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system
    Wan-Yong Wang · Li-Jun Pei School of Aerospace Engineering and Applied Mechanics
    [J]. Acta Mechanica Sinica, 2011, 27 (02) : 285 - 296
  • [7] Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system
    Wan-Yong Wang
    Li-Jun Pei
    [J]. Acta Mechanica Sinica, 2011, 27 : 285 - 296
  • [8] Bifurcation analysis for a ratio-dependent predator-prey system with multiple delays
    Lv, Dingyang
    Zhang, Wen
    Tang, Yi
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 3479 - 3490
  • [9] Hopf bifurcation of a ratio-dependent predator-prey system with time delay
    Celik, Canan
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (03) : 1474 - 1484
  • [10] Bifurcation Analysis of a Predator-Prey System with Ratio-Dependent Functional Response
    Jiang, Xin
    She, Zhikun
    Feng, Zhaosheng
    Zheng, Xiuliang
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (14):