EXPECTED DIMENSIONS OF HIGHER-RANK BRILL-NOETHER LOCI

被引:1
|
作者
Zhang, Naizhen [1 ]
机构
[1] Univ Calif Davis, Dept Math, One Shields Ave, Davis, CA 95616 USA
关键词
CONJECTURE;
D O I
10.1090/proc/13542
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a new expected dimension formula for certain rank two Brill-Noether loci with fixed special determinant. This answers a question asked by Osserman and also leads to a new and much simpler proof of a theorem in his 2015 work. Our result generalizes the well-known result by Bertram, Feinberg and independently Mukai on expected dimension of rank two Brill-Noether loci with canonical determinant and partially verifies a conjecture (in rank two) of Grzegorczyk and Newstead on coherent systems.
引用
收藏
页码:3735 / 3746
页数:12
相关论文
共 50 条
  • [41] NONEMPTINESS OF BRILL-NOETHER LOCI IN M (2, K)
    Lange, Herbert
    Newstead, Peter E.
    Park, Seong Suk
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) : 746 - 767
  • [42] New examples of twisted Brill-Noether loci I
    Brambila-Paz, L.
    Newstead, P. E.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (09)
  • [43] BRILL-NOETHER MATRIX FOR RANK TWO VECTOR BUNDLES
    TAN XIAOJIANGSchool of Mathematical Sciences
    Chinese Annals of Mathematics, 2002, (04) : 531 - 538
  • [44] Singularities of Brill-Noether loci for vector bundles on a curve
    Casalaina-Martin, Sebastian
    Teixidor i Bigas, Montserrat
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (14-15) : 1846 - 1871
  • [45] ON THE BRILL-NOETHER THEOREM
    EISENBUD, D
    HARRIS, J
    LECTURE NOTES IN MATHEMATICS, 1983, 997 : 131 - 137
  • [46] Motivic classes of degeneracy loci and pointed Brill-Noether varieties
    Anderson, Dave
    Chen, Linda
    Tarasca, Nicola
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (03): : 1787 - 1822
  • [47] BRILL-NOETHER THEORY FOR VECTOR-BUNDLES OF RANK 2
    BIGAS, MT
    TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (01) : 123 - 126
  • [48] Higher Rank Brill-Noether Theory on DOUBLE-STRUCK CAPITAL P2
    Gould, Ben
    Liu, Yeqin
    Lee, Woohyung
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (24) : 22096 - 22137
  • [49] K-classes of Brill-Noether Loci and a Determinantal Formula
    Anderson, Dave
    Chen, Linda
    Tarasca, Nicola
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (16) : 12653 - 12698
  • [50] Bounds on the dimension of the Brill-Noether schemes of rank two bundles
    Bajravani, Ali
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (01) : 345 - 354