Fractional Orlicz-Sobolev embeddings

被引:37
|
作者
Alberico, Angela [1 ]
Cianchi, Andrea [2 ]
Pick, Lubos [3 ]
Slavikova, Lenka [3 ,4 ]
机构
[1] CNR, Ist Applicaz Calcolo M Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[3] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
[4] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Fractional Orlicz-Sobolev spaces; Sobolev embeddings; Hardy inequalities; Orlicz spaces; Rearrangement-invariant spaces; GAGLIARDO-NIRENBERG INEQUALITIES; LIMITING EMBEDDINGS; INTEGRAL-OPERATORS; ORDER SOBOLEV; REGULARITY; THEOREM; SPACES; IMBEDDINGS; EXTENSION; BOUNDARY;
D O I
10.1016/j.matpur.2020.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The optimal Orlicz target space is exhibited for embeddings of fractional-order Orlicz-Sobolev spaces in R-n. An improved embedding with an Orlicz-Lorentz target space, which is optimal in the broader class of all rearrangement-invariant spaces, is also established. Both spaces of order s is an element of (0, 1), and higher-order spaces are considered. Related Hardy type inequalities are proposed as well. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:216 / 253
页数:38
相关论文
共 50 条
  • [41] A Polya-Szego principle for general fractional Orlicz-Sobolev spaces
    De Napoli, Pablo
    Fernandez Bonder, Julian
    Salort, Ariel
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (04) : 546 - 568
  • [42] Variational Integrals on Orlicz-Sobolev Spaces
    Fuchs, M.
    Osmolovski, V.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1998, 17 (02): : 393 - 415
  • [43] ON A ROBIN PROBLEM IN ORLICZ-SOBOLEV SPACES
    Avci, Mustafa
    Suslu, Kenan
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 246 - 256
  • [44] A short proof of the Orlicz-Sobolev inequality
    Kone, Hassane
    ADVANCES IN APPLIED MATHEMATICS, 2019, 107 : 116 - 124
  • [45] Pointwise behaviour of Orlicz-Sobolev functions
    Tuominen, Heli
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (01) : 35 - 59
  • [46] Boundary behavior of Orlicz-Sobolev classes
    D. A. Kovtonyuk
    V. I. Ryazanov
    R. R. Salimov
    E. A. Sevost’yanov
    Mathematical Notes, 2014, 95 : 509 - 519
  • [47] TOWARD THE THEORY OF ORLICZ-SOBOLEV CLASSES
    Kovtonyuk, D. A.
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (06) : 929 - 963
  • [48] Boundary behavior of Orlicz-Sobolev classes
    Kovtonyuk, D. A.
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    MATHEMATICAL NOTES, 2014, 95 (3-4) : 509 - 519
  • [49] Differentiability properties of Orlicz-Sobolev functions
    Alberico, A
    Cianchi, A
    ARKIV FOR MATEMATIK, 2005, 43 (01): : 1 - 28
  • [50] Removable Sets for Orlicz-Sobolev Spaces
    Karak, Nijjwal
    POTENTIAL ANALYSIS, 2015, 43 (04) : 675 - 694