Fractional Orlicz-Sobolev embeddings

被引:37
|
作者
Alberico, Angela [1 ]
Cianchi, Andrea [2 ]
Pick, Lubos [3 ]
Slavikova, Lenka [3 ,4 ]
机构
[1] CNR, Ist Applicaz Calcolo M Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[3] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
[4] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Fractional Orlicz-Sobolev spaces; Sobolev embeddings; Hardy inequalities; Orlicz spaces; Rearrangement-invariant spaces; GAGLIARDO-NIRENBERG INEQUALITIES; LIMITING EMBEDDINGS; INTEGRAL-OPERATORS; ORDER SOBOLEV; REGULARITY; THEOREM; SPACES; IMBEDDINGS; EXTENSION; BOUNDARY;
D O I
10.1016/j.matpur.2020.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The optimal Orlicz target space is exhibited for embeddings of fractional-order Orlicz-Sobolev spaces in R-n. An improved embedding with an Orlicz-Lorentz target space, which is optimal in the broader class of all rearrangement-invariant spaces, is also established. Both spaces of order s is an element of (0, 1), and higher-order spaces are considered. Related Hardy type inequalities are proposed as well. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:216 / 253
页数:38
相关论文
共 50 条
  • [21] Orlicz-Sobolev algebras
    Cianchi, Andrea
    POTENTIAL ANALYSIS, 2008, 28 (04) : 379 - 388
  • [22] INFINITELY MANY SOLUTIONS FOR PROBLEMS IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Bahrouni, Sabri
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (04) : 1151 - 1173
  • [23] On a class of generalized Choquard system in fractional Orlicz-Sobolev spaces
    El-Houari, Hamza
    Moussa, Hicham
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [24] On the Limit as s → 0+of Fractional Orlicz-Sobolev Spaces
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (06)
  • [25] Asymptotic Behaviours in Fractional Orlicz-Sobolev Spaces on Carnot Groups
    Capolli, M.
    Maione, A.
    Salort, A. M.
    Vecchi, E.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (03) : 3196 - 3229
  • [26] Quasilinear elliptic equations in RN via variational methods and Orlicz-Sobolev embeddings
    Azzollini, A.
    d'Avenia, P.
    Pomponio, A.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) : 197 - 213
  • [27] Characterization of orlicz-sobolev space
    Tuominen, Heli
    ARKIV FOR MATEMATIK, 2007, 45 (01): : 123 - 139
  • [28] ORLICZ-SOBOLEV IMBEDDING THEOREM
    ADAMS, RA
    JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (03) : 241 - 257
  • [29] Normality of the Orlicz-Sobolev Classes
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2016, 68 (01) : 115 - 126
  • [30] Orlicz-Sobolev nematic elastomers
    Henao, Duvan
    Stroffolini, Bianca
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194 (194)