Sharp comparison of moments and the log-concave moment problem

被引:20
|
作者
Eskenazis, Alexandros [1 ]
Nayar, Piotr [2 ]
Tkocz, Tomasz [3 ]
机构
[1] Princeton Univ, Math Dept, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[2] Univ Warsaw, Inst Math, Banacha 2, PL-02097 Warsaw, Poland
[3] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
基金
欧洲研究理事会;
关键词
Khintchine inequality; Integral inequality; l(p)(n)-ball; Moment comparison; Moment problem; Log-concave function; KHINTCHINE INEQUALITY; CONSTANTS; BALL;
D O I
10.1016/j.aim.2018.06.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article investigates sharp comparison of moments for various classes of random variables appearing in a geometric context. In the first part of our work we find the optimal constants in the Khintchine inequality for random vectors uniformly distributed on the unit ball of the space l(q)(n) for q is an element of (2, infinity), complementing past works that treated q is an element of (0, 2] U {infinity}. As a byproduct of this result, we prove an extremal property for weighted sums of symmetric uniform distributions among all symmetric unimodal distributions. In the second part we provide a one-to-one correspondence between vectors of moments of symmetric log-concave functions and two simple classes of piecewise log-affine functions. These functions are shown to be the unique extremisers of the p-th moment functional, under the constraint of a finite number of other moments being fixed, which is a refinement of the description of extremisers provided by the generalised localisation theorem of Fradelizi and Guedon (2006) [7]. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:389 / 416
页数:28
相关论文
共 50 条
  • [41] Geometry of Log-Concave Density Estimation
    Elina Robeva
    Bernd Sturmfels
    Caroline Uhler
    Discrete & Computational Geometry, 2019, 61 : 136 - 160
  • [42] On measures strongly log-concave on a subspace
    Bizeul, Pierre
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 1090 - 1100
  • [43] On the Poincare Constant of Log-Concave Measures
    Cattiaux, Patrick
    Guillin, Arnaud
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2017-2019, VOL I, 2020, 2256 : 171 - 217
  • [44] Clustering with mixtures of log-concave distributions
    Chang, George T.
    Walther, Guenther
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 6242 - 6251
  • [45] On Mixed Quermassintegral for Log-Concave Functions
    Chen, Fangwei
    Fang, Jianbo
    Luo, Miao
    Yang, Congli
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [46] Santalo Region of a Log-Concave Function
    Weissblat, Tal
    JOURNAL OF CONVEX ANALYSIS, 2013, 20 (02) : 453 - 474
  • [47] Confidence Bands for a Log-Concave Density
    Walther, Guenther
    Ali, Alnur
    Shen, Xinyue
    Boyd, Stephen
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022,
  • [48] A note on log-concave random graphs
    Frieze, Alan
    Tkocz, Tomasz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [49] The Minimal Perimeter of a Log-Concave Function
    Fang, Niufa
    Zhang, Zengle
    MATHEMATICS, 2020, 8 (08)
  • [50] INFERENCE FOR THE MODE OF A LOG-CONCAVE DENSITY
    Doss, Charles R.
    Wellner, Jon A.
    ANNALS OF STATISTICS, 2019, 47 (05): : 2950 - 2976