Sharp comparison of moments and the log-concave moment problem

被引:20
|
作者
Eskenazis, Alexandros [1 ]
Nayar, Piotr [2 ]
Tkocz, Tomasz [3 ]
机构
[1] Princeton Univ, Math Dept, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[2] Univ Warsaw, Inst Math, Banacha 2, PL-02097 Warsaw, Poland
[3] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
基金
欧洲研究理事会;
关键词
Khintchine inequality; Integral inequality; l(p)(n)-ball; Moment comparison; Moment problem; Log-concave function; KHINTCHINE INEQUALITY; CONSTANTS; BALL;
D O I
10.1016/j.aim.2018.06.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article investigates sharp comparison of moments for various classes of random variables appearing in a geometric context. In the first part of our work we find the optimal constants in the Khintchine inequality for random vectors uniformly distributed on the unit ball of the space l(q)(n) for q is an element of (2, infinity), complementing past works that treated q is an element of (0, 2] U {infinity}. As a byproduct of this result, we prove an extremal property for weighted sums of symmetric uniform distributions among all symmetric unimodal distributions. In the second part we provide a one-to-one correspondence between vectors of moments of symmetric log-concave functions and two simple classes of piecewise log-affine functions. These functions are shown to be the unique extremisers of the p-th moment functional, under the constraint of a finite number of other moments being fixed, which is a refinement of the description of extremisers provided by the generalised localisation theorem of Fradelizi and Guedon (2006) [7]. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:389 / 416
页数:28
相关论文
共 50 条
  • [21] ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION
    Kim, Arlene K. H.
    Guntuboyina, Adityanand
    Samworth, Richard J.
    ANNALS OF STATISTICS, 2018, 46 (05): : 2279 - 2306
  • [22] The descent statistic on involutions is not log-concave
    Barnabei, Marilena
    Bonetti, Flavio
    Silimbani, Matteo
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (01) : 11 - 16
  • [23] Inference and Modeling with Log-concave Distributions
    Walther, Guenther
    STATISTICAL SCIENCE, 2009, 24 (03) : 319 - 327
  • [24] Log-concave and spherical models in isoperimetry
    F. Barthe
    Geometric & Functional Analysis GAFA, 2002, 12 : 32 - 55
  • [25] Extreme eigenvalues of log-concave ensemble
    Bao, Zhigang
    Xu, Xiaocong
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2025, 61 (01): : 155 - 184
  • [26] The American put is log-concave in the log-price
    Ekström, E
    Tysk, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 314 (02) : 710 - 723
  • [27] The Lowner Function of a Log-Concave Function
    Li, Ben
    Schuett, Carsten
    Werner, Elisabeth M.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 423 - 456
  • [28] Geometry of Log-concave Functions and Measures
    B. Klartag
    V. D. Milman
    Geometriae Dedicata, 2005, 112 : 169 - 182
  • [29] Log-concave probability and its applications
    Bagnoli, M
    Bergstrom, T
    ECONOMIC THEORY, 2005, 26 (02) : 445 - 469
  • [30] Chernoff's density is log-concave
    Balabdaoui, Fadoua
    Wellner, Jon A.
    BERNOULLI, 2014, 20 (01) : 231 - 244