Finite generation of Lie algebras associated with associative algebras

被引:9
|
作者
Alahmadi, Adel [1 ]
Alsulami, Hamed [1 ]
Jain, S. K. [1 ,2 ]
Zelmanov, Efim [1 ,3 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
[2] Ohio Univ, Dept Math, Athens, OH 45701 USA
[3] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
基金
美国国家科学基金会;
关键词
Associative algebra; Lie subalgebra; Finitely generated; RINGS;
D O I
10.1016/j.jalgebra.2014.10.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field of characteristic not 2. An associative F-algebra R gives rise to the commutator Lie algebra R(-) = (R, [a, b] = ab - ba). If the algebra R is equipped with an involution * : R -> R then the space of the skew-symmetric elements K = {a is an element of R vertical bar a* = -a} is a Lie subalgebra of R(-). In this paper we find sufficient conditions for the Lie algebras [R, R] and [K, K] to be finitely generated. (C) 2014 Published by Elsevier Inc.
引用
收藏
页码:69 / 78
页数:10
相关论文
共 50 条
  • [41] On the generalized Lie structure of associative algebras
    Bahturin, Y
    Fischman, D
    ISRAEL JOURNAL OF MATHEMATICS, 1996, 96 : 27 - 48
  • [42] Lie Superautomorphisms on Associative Algebras, II
    Yuri Bahturin
    Matej Brešar
    Špela Špenko
    Algebras and Representation Theory, 2012, 15 : 507 - 525
  • [43] Lie ideals of graded associative algebras
    Hannes Bierwirth
    Mercedes Siles Molina
    Israel Journal of Mathematics, 2012, 191 : 111 - 136
  • [44] Jordan-Lie inner ideals of finite dimensional associative algebras
    Baranov, Alexander
    Shlaka, Hasan M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (05)
  • [45] SIMPLE ASSOCIATIVE ALGEBRAS ARISING FROM SOLVABLE LIE-ALGEBRAS
    MCCONNELL, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A89 - A89
  • [46] Totally compatible associative and Lie dialgebras, tridendriform algebras and PostLie algebras
    Yong Zhang
    ChengMing Bai
    Li Guo
    Science China Mathematics, 2014, 57 : 259 - 273
  • [47] Representations of restricted Lie algebras and families of associative L-algebras
    Premet, A
    Skryabin, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 507 : 189 - 218
  • [48] Totally compatible associative and Lie dialgebras,tridendriform algebras and PostLie algebras
    ZHANG Yong
    BAI ChengMing
    GUO Li
    Science China(Mathematics), 2014, 57 (02) : 259 - 273
  • [49] Totally compatible associative and Lie dialgebras, tridendriform algebras and PostLie algebras
    Zhang Yong
    Bai ChengMing
    Guo Li
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (02) : 259 - 273
  • [50] Combinatorial structures associated with Lie algebras of finite dimension
    Carriazo, A
    Fernández, LM
    Núñez, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 389 : 43 - 61