Finite generation of Lie algebras associated with associative algebras
被引:9
|
作者:
Alahmadi, Adel
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi ArabiaKing Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
Alahmadi, Adel
[1
]
Alsulami, Hamed
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi ArabiaKing Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
Alsulami, Hamed
[1
]
Jain, S. K.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
Ohio Univ, Dept Math, Athens, OH 45701 USAKing Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
Jain, S. K.
[1
,2
]
Zelmanov, Efim
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
Univ Calif San Diego, Dept Math, San Diego, CA 92103 USAKing Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
Zelmanov, Efim
[1
,3
]
机构:
[1] King Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
[2] Ohio Univ, Dept Math, Athens, OH 45701 USA
[3] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
Let F be a field of characteristic not 2. An associative F-algebra R gives rise to the commutator Lie algebra R(-) = (R, [a, b] = ab - ba). If the algebra R is equipped with an involution * : R -> R then the space of the skew-symmetric elements K = {a is an element of R vertical bar a* = -a} is a Lie subalgebra of R(-). In this paper we find sufficient conditions for the Lie algebras [R, R] and [K, K] to be finitely generated. (C) 2014 Published by Elsevier Inc.
机构:
St Petersburg State Univ, St Petersburg, Russia
Finance Acad Govt Russian Federat, Moscow, Russia
Moscow City Teachers Training Univ, Moscow, RussiaSt Petersburg State Univ, St Petersburg, Russia