Finite generation of Lie algebras associated with associative algebras

被引:9
|
作者
Alahmadi, Adel [1 ]
Alsulami, Hamed [1 ]
Jain, S. K. [1 ,2 ]
Zelmanov, Efim [1 ,3 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
[2] Ohio Univ, Dept Math, Athens, OH 45701 USA
[3] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
基金
美国国家科学基金会;
关键词
Associative algebra; Lie subalgebra; Finitely generated; RINGS;
D O I
10.1016/j.jalgebra.2014.10.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field of characteristic not 2. An associative F-algebra R gives rise to the commutator Lie algebra R(-) = (R, [a, b] = ab - ba). If the algebra R is equipped with an involution * : R -> R then the space of the skew-symmetric elements K = {a is an element of R vertical bar a* = -a} is a Lie subalgebra of R(-). In this paper we find sufficient conditions for the Lie algebras [R, R] and [K, K] to be finitely generated. (C) 2014 Published by Elsevier Inc.
引用
收藏
页码:69 / 78
页数:10
相关论文
共 50 条