Inexact Newton methods for the steady state analysis of nonlinear circuits

被引:9
|
作者
Guglielmi, N
机构
[1] Dottorato Ric. Matemat. C., Univ. degli Studi di Padova, 35131 Padova
来源
关键词
D O I
10.1142/S0218202596000043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper numerical problems arising from steady state analysis of nonlinear circuits with quasiperiodic excitation are discussed. The approach we consider is based on the piecewise harmonic balance technique(8,9) (HB), a methodology which has its theoretical foundations in Galerkin's procedure (see the paper by Urabe(1,2)). The original problem, which can be expressed in the form of a system of integrodifferential equations in the time domain, is changed into a nonlinear algebraic system through a natural projection technique. Thus, one of the main issues we have investigated consists in the numerical solution of the specific nonlinear algebraic problem.
引用
收藏
页码:43 / 57
页数:15
相关论文
共 50 条
  • [41] Globally convergent inexact quasi-Newton methods for solving nonlinear systems
    Birgin, EG
    Krejic, N
    Martínez, JM
    NUMERICAL ALGORITHMS, 2003, 32 (2-4) : 249 - 260
  • [42] Globally Convergent Inexact Quasi-Newton Methods for Solving Nonlinear Systems
    Ernesto G. Birgin
    Nataša Krejić
    José Mario Martínez
    Numerical Algorithms, 2003, 32 : 249 - 260
  • [43] Inexact Newton-Kantorovich Methods for Constrained Nonlinear Model Predictive Control
    Dontchev, Asen L.
    Huang, Mike
    Kolmanovsky, Ilya V.
    Nicotra, Marco M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (09) : 3602 - 3615
  • [44] LOCAL CONVERGENCE OF INEXACT NEWTON METHODS
    YPMA, TJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (03) : 583 - 590
  • [45] A wavelet-balance approach for steady-state analysis of nonlinear circuits
    Li, H
    Hu, B
    Ling, XT
    Zeng, X
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2002, 49 (05): : 689 - 694
  • [46] Scalable parallel matrix solver for steady state analysis of large nonlinear circuits
    Soveiko, Nick
    Nakhla, Michel
    Achar, Ramachandra
    Gad, Emad
    2008 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 2008, : 1408 - +
  • [47] A new method for the steady-state analysis of periodically excited nonlinear circuits
    Celik, M
    Atalar, A
    Tan, MA
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1996, 43 (12): : 964 - 972
  • [48] An application of the inexact newton method to nonlinear magnetostatics
    Borghi, CA
    Breschi, M
    Carraro, MR
    Cristofolini, A
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 1076 - 1079
  • [49] A NONLINEAR ELIMINATION PRECONDITIONED INEXACT NEWTON ALGORITHM
    Liu, Lulu
    Hwang, Feng-Nan
    Luo, Li
    Cai, Xiao-Chuan
    Keyes, David E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1579 - A1605
  • [50] Steady-state perturbative theory for nonlinear circuits
    Bhat, Harish S.
    Lee, Wooram
    Lilis, Georgios N.
    Afshari, Ehsan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (20)