Inexact Newton-Kantorovich Methods for Constrained Nonlinear Model Predictive Control

被引:7
|
作者
Dontchev, Asen L. [1 ,2 ]
Huang, Mike [3 ]
Kolmanovsky, Ilya V. [4 ]
Nicotra, Marco M. [4 ]
机构
[1] Amer Math Soc, Providence, RI 02904 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Toyota Motor North Amer, Res & Dev, Ann Arbor, MI 48105 USA
[4] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 澳大利亚研究理事会; 奥地利科学基金会;
关键词
Constrained systems; control engineering computing; inexact Newton-Kantorovich method; linear convergence; Newton method; nonlinear dynamical systems; nonlinear model predictive control; optimal control; quadratic programming; strong regularity; TIME ITERATION SCHEME; OPTIMIZATION; STABILITY;
D O I
10.1109/TAC.2018.2884402
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider Newton-Kantorovich type methods for solving control-constrained optimal control problems that appear in model predictive control. Conditions for convergence are established for an inexact version of the Newton-Kantorovich method applied to variational inequalities. Based on these results, two groups of algorithms are proposed to solve the optimality system. The first group includes exact and inexact Newton and Newton-Kantorovich implementations of the sequential quadratic programming. In the second group, exact and inexact Newton and Newton-Kantorovich methods are developed for solving a nonsmooth normal map equation equivalent to the optimality system. Numerical simulations featuring examples from the aerospace and automotive domain are presented, which show that inexact Newton-Kantorovich type methods can achieve significant reduction of the computational time.
引用
收藏
页码:3602 / 3615
页数:14
相关论文
共 50 条
  • [1] A Perturbed Chord (Newton-Kantorovich) Method for Constrained Nonlinear Model Predictive Control
    Butts, Ken
    Dontchev, Asen
    Huang, Mike
    Kolmanovsky, Ilya
    IFAC PAPERSONLINE, 2016, 49 (18): : 253 - 258
  • [2] On the equivalence of the Newton-Kantorovich and distorted Born methods
    Remis, RF
    van den Berg, PM
    INVERSE PROBLEMS, 2000, 16 (01) : L1 - L4
  • [3] Gradient and Newton-Kantorovich methods for microwave tomography
    Pichot, C
    Lobel, P
    Blanc-Feraud, L
    Barlaud, M
    Belkebir, K
    Elissalt, JM
    Geffrin, JM
    INVERSE PROBLEMS IN MEDICAL IMAGING AND NONDESTRUCTIVE TESTING, 1997, : 168 - 187
  • [4] Numerical Solution of Nonlinear Fredholm and Volterra Integrals by Newton-Kantorovich and Haar Wavelets Methods
    Sathar, Mohammad Hasan Abdul
    Rasedee, Ahmad Fadly Nurullah
    Ahmedov, Anvarjon A.
    Bachok, Norfifah
    SYMMETRY-BASEL, 2020, 12 (12): : 1 - 13
  • [5] Kantorovich-type theorem for inexact Newton methods
    Moret, Igor, 1600, (10): : 3 - 4
  • [6] A KANTOROVICH-TYPE THEOREM FOR INEXACT NEWTON METHODS
    MORET, I
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (3-4) : 351 - 365
  • [7] Weaker Kantorovich type criteria for inexact Newton methods
    Argyros, I. K.
    Khattri, S. K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 261 : 103 - 117
  • [8] Solving system of nonlinear integral equations by Newton-Kantorovich method
    Hameed, Hameed Husam
    Eshkuvatov, Z. K.
    Muminov, Z.
    Kilicman, Adem
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 518 - 523
  • [9] One dimensional nonlinear integral operator with Newton-Kantorovich method
    Eshkuvatov, Z. K.
    Hameed, Hameed Husam
    Long, N. M. A. Nik
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (02) : 172 - 177
  • [10] Newton-Kantorovich approximations to nonlinear singular integral equation with shift
    Dardery, Samah M.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 8873 - 8882