Inexact Newton-Kantorovich Methods for Constrained Nonlinear Model Predictive Control

被引:7
|
作者
Dontchev, Asen L. [1 ,2 ]
Huang, Mike [3 ]
Kolmanovsky, Ilya V. [4 ]
Nicotra, Marco M. [4 ]
机构
[1] Amer Math Soc, Providence, RI 02904 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Toyota Motor North Amer, Res & Dev, Ann Arbor, MI 48105 USA
[4] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 澳大利亚研究理事会; 奥地利科学基金会;
关键词
Constrained systems; control engineering computing; inexact Newton-Kantorovich method; linear convergence; Newton method; nonlinear dynamical systems; nonlinear model predictive control; optimal control; quadratic programming; strong regularity; TIME ITERATION SCHEME; OPTIMIZATION; STABILITY;
D O I
10.1109/TAC.2018.2884402
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider Newton-Kantorovich type methods for solving control-constrained optimal control problems that appear in model predictive control. Conditions for convergence are established for an inexact version of the Newton-Kantorovich method applied to variational inequalities. Based on these results, two groups of algorithms are proposed to solve the optimality system. The first group includes exact and inexact Newton and Newton-Kantorovich implementations of the sequential quadratic programming. In the second group, exact and inexact Newton and Newton-Kantorovich methods are developed for solving a nonsmooth normal map equation equivalent to the optimality system. Numerical simulations featuring examples from the aerospace and automotive domain are presented, which show that inexact Newton-Kantorovich type methods can achieve significant reduction of the computational time.
引用
收藏
页码:3602 / 3615
页数:14
相关论文
共 50 条
  • [41] Adaptive model predictive control for constrained nonlinear systems
    Adetol, Veronica
    DeHaan, Darryl
    Guay, Martin
    SYSTEMS & CONTROL LETTERS, 2009, 58 (05) : 320 - 326
  • [42] Stability constrained model predictive control for nonlinear systems
    Cheng, X
    Krogh, BH
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 2091 - 2096
  • [43] Contractive model predictive control for constrained nonlinear systems
    Kothare, SLD
    Morari, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (06) : 1053 - 1071
  • [44] An inexact Newton-like conditional gradient method for constrained nonlinear systems
    Goncalves, M. L. N.
    Oliveira, F. R.
    APPLIED NUMERICAL MATHEMATICS, 2018, 132 : 22 - 34
  • [45] A comparison between Newton-kantorovich method and adomian decomposition method for solving a class of nonlinear fredholm integral equations
    Mohammed D.S.H.
    Ahmed M.H.
    Shammala S.R.
    J. Comput. Theor. Nanosci., 1 (469-475): : 469 - 475
  • [46] Inexact Quasi-Newton methods for sparse systems of nonlinear equations
    Bergamaschi, L
    Moret, I
    Zilli, G
    FUTURE GENERATION COMPUTER SYSTEMS, 2001, 18 (01) : 41 - 53
  • [47] The convergence analysis of inexact Gauss-Newton methods for nonlinear problems
    Chen, Jinhai
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 40 (01) : 97 - 118
  • [48] Newton-Kantorovich iterative regularization and generalized discrepancy principle for nonlinear ill-posed equations involving accretive mappings
    Buong N.
    Nguyen N.D.
    Thuy N.T.T.
    Russian Mathematics, 2015, 59 (5) : 32 - 37
  • [49] An algorithm of identifying parameters satisfying a sufficient condition of Plum's Newton-Kantorovich like existence theorem for nonlinear operator equations
    Sekine, Kouta
    Takayasu, Akitoshi
    Oishi, Shin'ichi
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2014, 5 (01): : 64 - 79
  • [50] A parallel Newton-type method for nonlinear model predictive control
    Deng, Haoyang
    Ohtsuka, Toshiyuki
    AUTOMATICA, 2019, 109