Global solutions for the one-dimensional compressible Navier-Stokes-Smoluchowski system

被引:9
|
作者
Zhang, Jianlin [1 ]
Song, Changming [1 ]
Li, Hong [2 ]
机构
[1] Zhongyuan Univ Technol, Dept Appl Math, Coll Sci, Zhengzhou 450007, Peoples R China
[2] Zhongyuan Univ Technol, Dept Appl Phys, Coll Sci, Zhengzhou 450007, Peoples R China
关键词
PARTICLE INTERACTION-MODEL; FLUID; EQUATIONS; SEDIMENTATION; SIMULATION;
D O I
10.1063/1.4982360
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider a fluid-particle interaction model for the evolution of particles dispersed in a fluid. The fluid flow is governed by the Navier-Stokes equations for a compressible fluid while the evolution of the particle densities is given by the Smoluchowski equation. The coupling between the dispersed and dense phases is obtained through the drag forces that the fluid and the particles exert mutually. We establish the existence and uniqueness of a global classical solution, the existence of weak solutions, and the existence of a unique strong solution of this system in 1D for initial data rho(0) without vacuum states. Published by AIP Publishing.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Local Exact Controllability for the One-Dimensional Compressible Navier-Stokes Equation
    Ervedoza, Sylvain
    Glass, Olivier
    Guerrero, Sergio
    Puel, Jean-Pierre
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (01) : 189 - 238
  • [42] ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH LARGE DENSITY OSCILLATION
    Wang, Tao
    Zhao, Huijiang
    Zou, Qingyang
    KINETIC AND RELATED MODELS, 2013, 6 (03) : 649 - 670
  • [43] Global existence of strong solutions of Navier-Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids
    Liu Hongzhi
    Yuan Hongjun
    Qiao Jiezeng
    Li Fanpei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 5876 - 5891
  • [44] Compact attractors for the Navier-Stokes equations of one-dimensional, compressible flow
    Hoff, D
    Ziane, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (03): : 239 - 244
  • [45] GLOBAL EXISTENCE OF STRONG SOLUTIONS OF NAVIER-STOKES EQUATIONS WITH NON-NEWTONIAN POTENTIAL FOR ONE-DIMENSIONAL ISENTROPIC COMPRESSIBLE FLUIDS
    袁洪君
    柳洪志
    桥节增
    李梵蓓
    ActaMathematicaScientia, 2012, 32 (04) : 1467 - 1486
  • [46] GLOBAL EXISTENCE OF STRONG SOLUTIONS OF NAVIER-STOKES EQUATIONS WITH NON-NEWTONIAN POTENTIAL FOR ONE-DIMENSIONAL ISENTROPIC COMPRESSIBLE FLUIDS
    Yuan Hongjun
    Liu Hongzhi
    Qiao Jiezeng
    Li Fanpei
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (04) : 1467 - 1486
  • [47] Global existence of strong solutions of Navier-Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids
    Liu, Hongzhi
    Yuan, Hongjun
    Qiao, Jiezeng
    Li, Fanpei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05): : 865 - 878
  • [48] Global large solutions to the two-dimensional compressible Navier–Stokes equations
    Xiaoping Zhai
    Zhi-Min Chen
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [49] GLOBAL LARGE SOLUTIONS TO THE THREE DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Zhai, Xiaoping
    Li, Yongsheng
    Zhou, Fujun
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1806 - 1843
  • [50] Local well-posedness to the Cauchy problem of the 2D compressible Navier-Stokes-Smoluchowski equations with vacuum
    Liu, Yang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)