A MODIFIED PROOF OF PULLBACK ATTRACTORS IN A SOBOLEV SPACE FOR STOCHASTIC FITZHUGH-NAGUMO EQUATIONS

被引:74
|
作者
Li, Yangrong [1 ]
Yin, Jinyan [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
关键词
Random dynamical system; stochastic FitzHugh-Nagumo equations; pullback attractors; bi-spatial attractors; truncation method; REACTION-DIFFUSION EQUATIONS; DEGENERATE PARABOLIC EQUATIONS; H-1-RANDOM ATTRACTORS; GLOBAL ATTRACTORS; EXISTENCE; REGULARITY; SYSTEMS;
D O I
10.3934/dcdsb.2016.21.1203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bi-spatial pullback attractor is obtained for non-autonomous and stochastic FitzHugh-Nagumo equations when the initial space is L-2(R-n)(2) and the terminate space is H-1(R-n) x L-2(R-n). Some new techniques of positive and negative truncations are used to investigate the regularity of attractors for coupling equations and to correct the essential mistake in [T. Q. Bao, Discrete Cont. Dyn. Syst. 35(2015), 441-466]. A counterexample is given for an important lemma for H-1-attractor in several literatures included above.
引用
收藏
页码:1203 / 1223
页数:21
相关论文
共 50 条
  • [31] AN ANALYTICAL STUDY OF THE SPACE-CLAMPED FITZHUGH-NAGUMO NERVE EQUATIONS
    RAJAGOPAL, K
    PHYSICS LETTERS A, 1984, 105 (03) : 160 - 162
  • [32] A RELAXATION WAVE SOLUTION OF THE FITZHUGH-NAGUMO EQUATIONS
    KALACHEV, LV
    JOURNAL OF MATHEMATICAL BIOLOGY, 1993, 31 (02) : 133 - 147
  • [33] Standing Pulse Solutions to FitzHugh-Nagumo Equations
    Chen, Chao-Nien
    Choi, Y. S.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (03) : 741 - 777
  • [34] PLANAR STANDING WAVEFRONTS IN THE FITZHUGH-NAGUMO EQUATIONS
    Chen, Chao-Nien
    Kung, Shih-Yin
    Morita, Yoshihisa
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) : 657 - 690
  • [35] ANALOG CIRCUITRY FOR THE VANDERPOL AND FITZHUGH-NAGUMO EQUATIONS
    KEENER, JP
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1983, 13 (05): : 1010 - 1014
  • [36] Singular limit of FitzHugh-Nagumo equations on a sphere
    Lou, Bendong
    Zhou, Lingjun
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2008, 88 (08): : 644 - 649
  • [37] Stochastic resonance in FitzHugh-Nagumo neural model
    Zhou, Dengrong
    Gong, Jianchun
    Li, Dan
    AUTOMATIC CONTROL AND MECHATRONIC ENGINEERING II, 2013, 415 : 298 - +
  • [38] Ghost stochastic resonance in FitzHugh-Nagumo circuit
    Bordet, M.
    Morfu, S.
    Marquie, P.
    ELECTRONICS LETTERS, 2014, 50 (12) : 861 - 862
  • [39] Existence of wavefronts and impulses to FitzHugh-Nagumo equations
    Gao, WL
    Wang, JH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (5-6) : 667 - 676
  • [40] On some properties of the coupled Fitzhugh-Nagumo equations
    Lavrova, S. F.
    Kudryashov, N. A.
    Sinelshchikov, D. I.
    VII INTERNATIONAL CONFERENCE PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING, 2019, 1205