A MODIFIED PROOF OF PULLBACK ATTRACTORS IN A SOBOLEV SPACE FOR STOCHASTIC FITZHUGH-NAGUMO EQUATIONS

被引:74
|
作者
Li, Yangrong [1 ]
Yin, Jinyan [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
关键词
Random dynamical system; stochastic FitzHugh-Nagumo equations; pullback attractors; bi-spatial attractors; truncation method; REACTION-DIFFUSION EQUATIONS; DEGENERATE PARABOLIC EQUATIONS; H-1-RANDOM ATTRACTORS; GLOBAL ATTRACTORS; EXISTENCE; REGULARITY; SYSTEMS;
D O I
10.3934/dcdsb.2016.21.1203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bi-spatial pullback attractor is obtained for non-autonomous and stochastic FitzHugh-Nagumo equations when the initial space is L-2(R-n)(2) and the terminate space is H-1(R-n) x L-2(R-n). Some new techniques of positive and negative truncations are used to investigate the regularity of attractors for coupling equations and to correct the essential mistake in [T. Q. Bao, Discrete Cont. Dyn. Syst. 35(2015), 441-466]. A counterexample is given for an important lemma for H-1-attractor in several literatures included above.
引用
收藏
页码:1203 / 1223
页数:21
相关论文
共 50 条
  • [11] Random uniform attractors for fractional stochastic FitzHugh-Nagumo lattice systems
    Li, Xintao
    Gao, Yunlong
    AIMS MATHEMATICS, 2024, 9 (08): : 22251 - 22270
  • [12] SPLITTING SCHEMES FOR FITZHUGH-NAGUMO STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
    Brehier, Charles-Edouard
    Cohen, David
    Giordano, Giuseppe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (01): : 214 - 244
  • [13] Limiting dynamics for stochastic FitzHugh-Nagumo equations on large domains
    Li, Yangrong
    Li, Fuzhi
    STOCHASTICS AND DYNAMICS, 2019, 19 (05)
  • [14] STOCHASTIC FITZHUGH-NAGUMO SYSTEMS WITH DELAY
    Xu, Lu
    Yan, Weiping
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03): : 1079 - 1103
  • [15] Deterministic and Stochastic FitzHugh-Nagumo Systems
    Thieullen, Michele
    STOCHASTIC BIOMATHEMATICAL MODELS: WITH APPLICATIONS TO NEURONAL MODELING, 2013, 2058 : 175 - 186
  • [16] FITZHUGH-NAGUMO EQUATIONS ARE A GRADIENT SYSTEM
    MORNEV, OA
    PANFILOV, AV
    ALIEV, RR
    BIOFIZIKA, 1992, 37 (01): : 123 - 125
  • [17] QUALITATIVE THEORY OF FITZHUGH-NAGUMO EQUATIONS
    RAUCH, J
    SMOLLER, J
    ADVANCES IN MATHEMATICS, 1978, 27 (01) : 12 - 44
  • [18] CONTINUITY OF RANDOM ATTRACTORS ON A TOPOLOGICAL SPACE AND FRACTIONAL DELAYED FITZHUGH-NAGUMO EQUATIONS WITH WZ-NOISE
    Li, Yangrong
    Yang, Shuang
    Long, Guangqing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (10): : 5977 - 6008
  • [19] Spatially discrete Fitzhugh-Nagumo equations
    Elmer, CE
    Van Vleck, ES
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (04) : 1153 - 1174
  • [20] Analysis of the stochastic FitzHugh-Nagumo system
    Bonaccorsi, Stefano
    Mastrogiacomo, Elisa
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (03) : 427 - 446