Hysteresis-free carbon nanotube field-effect transistors without passivation

被引:0
|
作者
Tittmann, J. [1 ]
Hermann, S. [1 ]
Schulz, S. E. [1 ,3 ]
Pacheco-Sanchez, A. [2 ]
Claus, M. [2 ]
Schroeter, M. [2 ,4 ]
Schulz, S. E. [1 ,3 ]
Schroeter, M. [2 ,4 ]
机构
[1] Tech Univ Chemnitz, Ctr Microtechnol, D-09111 Chemnitz, Germany
[2] Tech Univ Dresden, Chair Elect Devices & Integrated Circuits, Dresden, Germany
[3] Fraunhofer Inst Elect Nano Syst, Chemnitz, Germany
[4] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA USA
关键词
carbon nanotube; CNTFET; passivation; cleaning; hysteresis;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Back-gated carbon nanotube field-effect transistors have been fabricated using a wafer-level technology. Source and drain electrodes are structured by lift-off and wet etching. AFM measurements reveal residual contaminations originating from structuring processes. We investigate the particle removal by an oxygen plasma treatment depending on the process time. I/V characterization reveals a strong dependency of transistor characteristics, especially hysteresis behavior, on surface cleanliness. We find the removal of residual particles to be much more important than a passivation to keep water molecules from the transistor region. We show hysteresis-free transistor behavior even after 9 weeks of storage in air without passivation.
引用
收藏
页码:137 / +
页数:2
相关论文
共 50 条
  • [1] Hysteresis-Free Carbon Nanotube Field-Effect Transistors
    Park, Rebecca S.
    Hills, Gage
    Sohn, Joon
    Mitra, Subhasish
    Shulaker, Max M.
    Wong, H. -S. Philip
    [J]. ACS NANO, 2017, 11 (05) : 4785 - 4791
  • [2] Hysteresis-Free Carbon Nanotube Field Effect Transistors Without Any Post-Treatment
    Wang, Chuan
    Fu, Yunyi
    Guo, Ao
    Liu, Jia
    Guan, Lunhui
    Shi, Zujin
    Gu, Zhennan
    Huang, Ru
    Zhang, Xing
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 1004 - 1007
  • [3] High-performance, hysteresis-free carbon nanotube field-effect transistors via directed assembly
    McGill, Stephen A.
    Rao, Saleem G.
    Manandhar, Pradeep
    Xiong, Peng
    Hong, Seunghun
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (16)
  • [4] Self aligned hysteresis free carbon nanotube field-effect transistors
    Shlafman, M.
    Tabachnik, T.
    Shtempluk, O.
    Razin, A.
    Kochetkov, V.
    Yaish, Y. E.
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (16)
  • [5] Hysteresis-free operation of suspended carbon nanotube transistors
    Muoth M.
    Helbling T.
    Durrer L.
    Lee S.-W.
    Roman C.
    Hierold C.
    [J]. Nature Nanotechnology, 2010, 5 (8) : 589 - 592
  • [6] Hysteresis-free operation of suspended carbon nanotube transistors
    Muoth, M.
    Helbling, T.
    Durrer, L.
    Lee, S. -W.
    Roman, C.
    Hierold, C.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (08) : 589 - 592
  • [7] Origin of gate hysteresis in carbon nanotube field-effect transistors
    Lee, Joon Sung
    Ryu, Sunmin
    Yoo, Kwonjae
    Choi, Insung S.
    Yun, Wan Soo
    Kim, Jinhee
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (34): : 12504 - 12507
  • [8] Hysteresis modeling in ballistic carbon nanotube field-effect transistors
    Liu, Yian
    Moura, Mateus S.
    Costa, Ademir J.
    de Almeida, Luiz Alberto L.
    Paranjape, Makarand
    Fontana, Marcio
    [J]. NANOTECHNOLOGY SCIENCE AND APPLICATIONS, 2014, 7 : 55 - 61
  • [9] A nanogapped hysteresis-free field-effect transistor
    Tang, Jiachen
    Liu, Luhao
    Shao, Yinjiang
    Wang, Xinran
    Shi, Yi
    Li, Songlin
    [J]. APPLIED PHYSICS LETTERS, 2022, 121 (02)
  • [10] Wafer-Level Hysteresis-Free Resonant Carbon Nanotube Transistors
    Cao, Ji
    Bartsch, Sebastian T.
    Ionescu, Adrian M.
    [J]. ACS NANO, 2015, 9 (03) : 2836 - 2842