Hysteresis-free carbon nanotube field-effect transistors without passivation

被引:0
|
作者
Tittmann, J. [1 ]
Hermann, S. [1 ]
Schulz, S. E. [1 ,3 ]
Pacheco-Sanchez, A. [2 ]
Claus, M. [2 ]
Schroeter, M. [2 ,4 ]
Schulz, S. E. [1 ,3 ]
Schroeter, M. [2 ,4 ]
机构
[1] Tech Univ Chemnitz, Ctr Microtechnol, D-09111 Chemnitz, Germany
[2] Tech Univ Dresden, Chair Elect Devices & Integrated Circuits, Dresden, Germany
[3] Fraunhofer Inst Elect Nano Syst, Chemnitz, Germany
[4] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA USA
关键词
carbon nanotube; CNTFET; passivation; cleaning; hysteresis;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Back-gated carbon nanotube field-effect transistors have been fabricated using a wafer-level technology. Source and drain electrodes are structured by lift-off and wet etching. AFM measurements reveal residual contaminations originating from structuring processes. We investigate the particle removal by an oxygen plasma treatment depending on the process time. I/V characterization reveals a strong dependency of transistor characteristics, especially hysteresis behavior, on surface cleanliness. We find the removal of residual particles to be much more important than a passivation to keep water molecules from the transistor region. We show hysteresis-free transistor behavior even after 9 weeks of storage in air without passivation.
引用
收藏
页码:137 / +
页数:2
相关论文
共 50 条
  • [21] Ballistic carbon nanotube field-effect transistors
    Ali Javey
    Jing Guo
    Qian Wang
    Mark Lundstrom
    Hongjie Dai
    [J]. Nature, 2003, 424 : 654 - 657
  • [22] Carbon nanotube field-effect transistors: An assessment
    Pulfrey, D. L.
    [J]. Nanoscience and Technology, Pts 1 and 2, 2007, 121-123 : 503 - 506
  • [23] A measurement technique for circumventing hysteresis and conductance drift in carbon nanotube field-effect transistors
    Tunnell, Andrew
    Ballarotto, Vincent
    Cumings, John
    [J]. NANOTECHNOLOGY, 2014, 25 (04)
  • [24] Ballistic carbon nanotube field-effect transistors
    Javey, A
    Guo, J
    Wang, Q
    Lundstrom, M
    Dai, HJ
    [J]. NATURE, 2003, 424 (6949) : 654 - 657
  • [25] Photoresponse of carbon nanotube field-effect transistors
    Ohno, Y
    Kishimoto, S
    Mizutani, T
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (4A): : 1592 - 1595
  • [26] Carbon Nanotube-Gated Carbon Nanotube Field-Effect Transistors
    Li, Hong
    Zou, Jianping
    Zhang, Qing
    [J]. NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2010, 2 (01) : 21 - 25
  • [27] Proposal of a Hysteresis-Free Zero Subthreshold Swing Field-Effect Transistor
    Jain, Ankit
    Alam, Muhammad Ashraful
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (10) : 3546 - 3552
  • [28] Polymethyl methacrylate passivation of carbon nanotube field-effect transistors: Novel self-aligned process and effect on device transfer characteristic hysteresis
    Rispal, Lorraine
    Tschischke, Tobias
    Yang, Hongyu
    Schwalke, Udo
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (04) : 3287 - 3291
  • [29] Processes to enable hysteresis-free operation of ultrathin ALD Te p-channel field-effect transistors
    Kim, Minjae
    Lee, Yongsu
    Kim, Kyuheon
    Pham, Giang-Hoang
    Kim, Kiyung
    Jun, Jae Hyeon
    Lee, Hae-won
    Yoon, Seongbeen
    Hwang, Hyeon Jun
    Sung, Myung Mo
    Lee, Byoung Hun
    [J]. NANOSCALE HORIZONS, 2024,
  • [30] Hysteresis-free organic field-effect transistors and inverters using photocrosslinkable poly(vinyl cinnamate) as a gate dielectric
    Jang, Jaeyoung
    Kim, Se Hyun
    Nam, Sooji
    Chung, Dae Sung
    Yang, Chanwoo
    Yun, Won Min
    Park, Chan Eon
    Koo, Jae Bon
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (14)