An invariance property of diffusive random walks

被引:100
|
作者
Blanco, S [1 ]
Fournier, R [1 ]
机构
[1] Univ Toulouse 3, Lab Energet, F-31062 Toulouse 4, France
来源
EUROPHYSICS LETTERS | 2003年 / 61卷 / 02期
关键词
D O I
10.1209/epl/i2003-00208-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from a simple animal-biology example, a general, somewhat counter-intuitive property of diffusion random walks is presented. It is shown that for any (nonhomogeneous) purely diffusing system, under any isotropic uniform incidence, the average length of trajectories through the system ( the average length of the random walk trajectories from entry point to first exit point) is independent of the characteristics of the diffusion process and therefore depends only on the geometry of the system. This exact invariance property may be seen as a generalization to diffusion of the well-known mean-chord-length property (Case K.M. and Zweifel P.F., Linear Transport Theory (Addison-Wesley) 1967), leading to broad physics and biology applications.
引用
收藏
页码:168 / 173
页数:6
相关论文
共 50 条
  • [31] Invariance relations for random walks on simple cubic lattices
    Garza-López, RA
    Linares, A
    Yoo, A
    Evans, G
    Kozak, JJ
    CHEMICAL PHYSICS LETTERS, 2006, 421 (1-3) : 287 - 294
  • [32] An almost sure invariance principle for the range of random walks
    Hamana, YJ
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 78 (02) : 131 - 143
  • [33] Invariance properties of bacterial random walks in complex structures
    Frangipane, Giacomo
    Vizsnyiczai, Gaszton
    Maggi, Claudio
    Savo, Romolo
    Sciortino, Alfredo
    Gigan, Sylvain
    Di Leonardo, Roberto
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [34] CONFORMAL-INVARIANCE AND INTERSECTIONS OF RANDOM-WALKS
    DUPLANTIER, B
    KWON, KH
    PHYSICAL REVIEW LETTERS, 1988, 61 (22) : 2514 - 2517
  • [35] Invariance principle for nonhomogeneous random walks on the grid Z
    Yarotskii, DA
    MATHEMATICAL NOTES, 1999, 66 (3-4) : 372 - 383
  • [36] Quenched invariance principle for random walks on Delaunay triangulations
    Rousselle, Arnaud
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 32
  • [37] A class of random polynomials with an invariance property
    Kagan, A
    Rohatgi, V
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 63 (02) : 215 - 222
  • [38] A note on the finite collision property of random walks
    Chen, Dayue
    Wei, Bei
    Zhang, Fuxi
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1742 - 1747
  • [39] Quenched invariance principle for long range random walks in balanced random environments
    Chen, Xin
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2243 - 2267
  • [40] An invariance principle for a class of non-ballistic random walks in random environment
    Erich Baur
    Probability Theory and Related Fields, 2016, 166 : 463 - 514