An invariance property of diffusive random walks

被引:100
|
作者
Blanco, S [1 ]
Fournier, R [1 ]
机构
[1] Univ Toulouse 3, Lab Energet, F-31062 Toulouse 4, France
来源
EUROPHYSICS LETTERS | 2003年 / 61卷 / 02期
关键词
D O I
10.1209/epl/i2003-00208-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from a simple animal-biology example, a general, somewhat counter-intuitive property of diffusion random walks is presented. It is shown that for any (nonhomogeneous) purely diffusing system, under any isotropic uniform incidence, the average length of trajectories through the system ( the average length of the random walk trajectories from entry point to first exit point) is independent of the characteristics of the diffusion process and therefore depends only on the geometry of the system. This exact invariance property may be seen as a generalization to diffusion of the well-known mean-chord-length property (Case K.M. and Zweifel P.F., Linear Transport Theory (Addison-Wesley) 1967), leading to broad physics and biology applications.
引用
收藏
页码:168 / 173
页数:6
相关论文
共 50 条
  • [21] Diffusive bounds for the critical density of activated random walks
    Asselah, Amine
    Rolla, Leonardo T.
    Schapira, Bruno
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 (01): : 457 - 465
  • [22] Branching random walks in random environment are diffusive in the regular growth phase
    Heil, Hadrian
    Nakashima, Makoto
    Yoshida, Nobuo
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1316 - 1340
  • [23] QUENCHED INVARIANCE PRINCIPLE FOR RANDOM WALKS AMONG RANDOM DEGENERATE CONDUCTANCES
    Bella, Peter
    Schaffner, Mathias
    ANNALS OF PROBABILITY, 2020, 48 (01): : 296 - 316
  • [24] Invariance principle for non-homogeneous random walks
    Georgiou, Nicholas
    Mijatovic, Aleksandar
    Wade, Andrew R.
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [25] Invariance principle for nonhomogeneous random walks on the grid ℤ1
    D. A. Yarotskii
    Mathematical Notes, 1999, 66 : 372 - 383
  • [26] Invariance principles for random walks conditioned to stay positive
    Caravenna, Francesco
    Chaumont, Loic
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (01): : 170 - 190
  • [27] On time scale invariance of random walks in confined space
    Bearup, Daniel
    Petrovskii, Sergei
    JOURNAL OF THEORETICAL BIOLOGY, 2015, 367 : 230 - 245
  • [28] INVARIANCE PRINCIPLE FOR VARIABLE SPEED RANDOM WALKS ON TREES
    Athreya, Siva
    Loehr, Wolfgang
    Winter, Anita
    ANNALS OF PROBABILITY, 2017, 45 (02): : 625 - 667
  • [29] Invariance properties of bacterial random walks in complex structures
    Giacomo Frangipane
    Gaszton Vizsnyiczai
    Claudio Maggi
    Romolo Savo
    Alfredo Sciortino
    Sylvain Gigan
    Roberto Di Leonardo
    Nature Communications, 10
  • [30] Quenched invariance principles for random walks on percolation clusters
    Mathieu, P.
    Piatnitski, A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2085): : 2287 - 2307