An invariance property of diffusive random walks

被引:100
|
作者
Blanco, S [1 ]
Fournier, R [1 ]
机构
[1] Univ Toulouse 3, Lab Energet, F-31062 Toulouse 4, France
来源
EUROPHYSICS LETTERS | 2003年 / 61卷 / 02期
关键词
D O I
10.1209/epl/i2003-00208-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from a simple animal-biology example, a general, somewhat counter-intuitive property of diffusion random walks is presented. It is shown that for any (nonhomogeneous) purely diffusing system, under any isotropic uniform incidence, the average length of trajectories through the system ( the average length of the random walk trajectories from entry point to first exit point) is independent of the characteristics of the diffusion process and therefore depends only on the geometry of the system. This exact invariance property may be seen as a generalization to diffusion of the well-known mean-chord-length property (Case K.M. and Zweifel P.F., Linear Transport Theory (Addison-Wesley) 1967), leading to broad physics and biology applications.
引用
收藏
页码:168 / 173
页数:6
相关论文
共 50 条
  • [1] An invariance property of generalized Pearson random walks in bounded geometries
    Mazzolo, Alain
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (10)
  • [2] On the mean path length invariance property for random walks of animals in open environment
    Tommasi, Federico
    Fini, Lorenzo
    Focardi, Stefano
    Martelli, Fabrizio
    Santini, Giacomo
    Cavalieri, Stefano
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] On the mean path length invariance property for random walks of animals in open environment
    Federico Tommasi
    Lorenzo Fini
    Stefano Focardi
    Fabrizio Martelli
    Giacomo Santini
    Stefano Cavalieri
    Scientific Reports, 12
  • [4] Invariance principles for random walks in cones
    Duraj, Jetlir
    Wachtel, Vitali
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) : 3920 - 3942
  • [5] Cut points and diffusive random walks in random environment
    Bolthausen, E
    Sznitman, AS
    Zeitouni, O
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (03): : 527 - 555
  • [6] Quenched Invariance Principles for Random Walks with Random Conductances
    P. Mathieu
    Journal of Statistical Physics, 2008, 130 : 1025 - 1046
  • [7] Quenched invariance principles for random walks with random conductances
    Mathieu, P.
    JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (05) : 1025 - 1046
  • [8] Properties of diffusive random walks in bounded domains
    Mazzolo, A
    EUROPHYSICS LETTERS, 2004, 68 (03): : 350 - 355
  • [9] Invariance relations for random walks on hexagonal lattices
    Garza-López, RA
    Kozak, JJ
    CHEMICAL PHYSICS LETTERS, 2003, 371 (3-4) : 365 - 370
  • [10] Invariance principle for biased bootstrap random walks
    Collevecchio, Andrea
    Hamza, Kais
    Liu, Yunxuan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (03) : 860 - 877