Relaxation approximation of optimal control problems and applications to traffic flow models

被引:0
|
作者
Albi, Giacomo [1 ]
Herty, Michael [2 ]
Pareschi, Lorenzo [3 ]
机构
[1] Univ Verona, Dept Comp Sci, Str Le Grazie 15,Ca Vignal 2, I-37134 Verona, Italy
[2] Rhein Westfal TH Aachen, Templergraben 55, D-52062 Aachen, Germany
[3] Univ Ferrara, Dept Math & Comp Sci, Via Machiavelli 35, I-44121 Ferrara, Italy
关键词
SYSTEMS;
D O I
10.1063/1.5042169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are interested in the numerical solution of optimal control problems for non-linear hyperbolic conservation laws. To this aim, we consider relaxation approximations to the conservation laws coupled with the optimal control problem. Following a semi-Lagrangian interpretation of the hyperbolic relaxation system, and its adjoint counterpart, we solve efficiently the time discretization introducing a multi-step scheme in the class of BDF methods. Computational results illustrating the theoretical findings with applications to traffic flow models are presented.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] PROPER RELAXATION OF OPTIMAL-CONTROL PROBLEMS
    ROSENBLUETH, JF
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (03) : 509 - 526
  • [22] TRAFFIC FLOW AND CONTROL - THEORY AND APPLICATIONS
    GAZIS, DC
    AMERICAN SCIENTIST, 1972, 60 (04) : 414 - &
  • [23] Approximation of optimal control problems with bound constraints by control parameterization
    Alt, W
    CONTROL AND CYBERNETICS, 2003, 32 (03): : 451 - 472
  • [24] An optimal control problem of traffic flow on a junction
    Cardaliaguet, Pierre
    Souganidis, Panagiotis E.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [25] The optimal velocity traffic flow models with open boundaries
    Ez-Zahraouy, H
    Benrihane, Z
    Benyoussef, A
    EUROPEAN PHYSICAL JOURNAL B, 2003, 36 (02): : 289 - 293
  • [26] The optimal velocity traffic flow models with open boundaries
    H. Ez-Zahraouy
    Z. Benrihane
    A. Benyoussef
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 36 : 289 - 293
  • [27] Numerical approximation of optimal flow control problems by a penalty method: Error estimates and numerical results
    Hou, LS
    Ravindran, SS
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (05): : 1753 - 1777
  • [28] Approximation of generalized minimizers and regularization of optimal control problems
    Guerra, Manuel
    Sarychev, Andrey
    LAGRANGIAN AND HAMILTONIAN METHODS FOR NONLINEAR CONTROL 2006, 2007, 366 : 269 - +
  • [29] An Approximation Scheme for Uncertain Minimax Optimal Control Problems
    Aragone, Laura S.
    Gianatti, Justina
    Lotito, Pablo A.
    Parente, Lisandro A.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2018, 26 (04) : 843 - 866
  • [30] Approximation methods for solving fractional optimal control problems
    Samaneh Soradi Zeid
    Sohrab Effati
    Ali Vahidian Kamyad
    Computational and Applied Mathematics, 2018, 37 : 158 - 182