An optimal control problem of traffic flow on a junction

被引:0
|
作者
Cardaliaguet, Pierre [1 ]
Souganidis, Panagiotis E. [2 ]
机构
[1] Univ Paris 09, PSL Res Univ, Pl Marechal Lattre Tassigny, F-75775 Paris 16, France
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Optimal control of partial differential equation; Conservation law on a junction; Hamilton-Jacobi equation on a junction; HAMILTON-JACOBI EQUATIONS; EQUILIBRIA; OPTIMIZATION; MODEL;
D O I
10.1051/cocv/2024077
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate how to control optimally a traffic flow through a junction on the line by acting only on speed reduction or traffic light at the junction. We show the existence of an optimal control and, under structure assumptions, provide optimality conditions. We use this analysis to investigate thoroughly the maximization of the flux on a space-time subset and show the existence of an optimal control which is bang-bang.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] PROBLEM OF OPTIMAL-CONTROL OF TRAFFIC FLOW ON HIGHWAYS
    BLINKIN, MY
    AUTOMATION AND REMOTE CONTROL, 1976, 37 (05) : 662 - 667
  • [2] Optimal Control for Traffic Flow Networks
    M. Gugat
    M. Herty
    A. Klar
    G. Leugering
    Journal of Optimization Theory and Applications, 2005, 126 : 589 - 616
  • [3] Optimal control for traffic flow networks
    Gugat, M
    Herty, M
    Klar, A
    Leugering, G
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 126 (03) : 589 - 616
  • [4] Optimal control laws for traffic flow
    Aihara, K.
    Ito, K.
    Nakagawa, J.
    Takeuchi, T.
    APPLIED MATHEMATICS LETTERS, 2013, 26 (06) : 617 - 623
  • [5] Traffic Flows Optimal Control Problem with Full Information
    Sofronova, E. A.
    Diveev, A., I
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [6] Nonlinear Optimal Control of Traffic Flow with Stability Guarantees
    Baumgart, Urs
    Moreno-Mora, Francisco
    Beckenbach, Lukas
    Burger, Michael
    Streif, Stefan
    IFAC PAPERSONLINE, 2023, 56 (02): : 4965 - 4970
  • [7] INTEGRATED OPTIMAL FLOW-CONTROL IN TRAFFIC NETWORKS
    BANOS, JCM
    PAPAGEORGIOU, M
    SCHAFFNER, C
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1993, 71 (02) : 317 - 323
  • [8] An Optimal Control Problem for a Generalized Bioconvective Flow
    Boldrini, Jose L.
    de Aguiar, Rogerio
    Rojas-Medar, Marko A.
    Rojas-Medar, Maria D.
    ACTA APPLICANDAE MATHEMATICAE, 2022, 179 (01)
  • [9] An Optimal Control Problem for a Generalized Bioconvective Flow
    Jose L. Boldrini
    Rogério de Aguiar
    Marko A. Rojas-Medar
    Maria D. Rojas-Medar
    Acta Applicandae Mathematicae, 2022, 179
  • [10] An optimal control approach to the optical flow problem
    Barbu, Viorel
    Marinoschi, Gabriela
    SYSTEMS & CONTROL LETTERS, 2016, 87 : 1 - 9