Polaron effects in cylindrical GaAs/AlxGa1-x As core-shell nanowires

被引:4
|
作者
Sun, Hui [1 ]
Liu, Bing-Can [2 ]
Tian, Qiang [1 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Acad Armored Forces Engn, Dept Fundamental Courses, Beijing 100072, Peoples R China
基金
中国国家自然科学基金;
关键词
core-shell nanowire; core radius; polaron effects; fractal dimension; FRACTIONAL-DIMENSIONAL SPACE; QUANTUM-WELLS; SUBSTRATE; THICKNESS; MODEL;
D O I
10.1088/1674-1056/26/9/097302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By the fractal dimension method, the polaron properties in cylindrical GaAs/AlxGa1-x As core-shell nanowire are explored. In this study, the polaron effects in GaAs/AlxGa1-x As core-shell nanowire at different values of shell width and aluminum concentration are discussed. The polaron binding energy, polaron mass shift and fractal dimension parameter are numerically worked out each as a function of core radius. The calculation results show that the binding energy and mass shift of the polaron first increase and then decrease as the core radius increases, forming their corresponding maximum values for different aluminum concentrations at a given shell width. Polaron problems in the cylindrical GaAs/AlxGa1-x As core-shell nanowire are solved simply by using the fractal dimension method to avoid complex and lengthy calculations.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Core-Shell GaAs-AlAs Nanowires Grown by MBE
    Shtrikman, Hadas
    Popovitz-Biro, Ronit
    von Huth, Palle
    Kretinin, Andrey
    Heiblum, Moty
    INEC: 2010 3RD INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2010, : 103 - +
  • [32] EXCITONS ASSOCIATED WITH SUBBAND DISPERSION IN GAAS/ALXGA1-X AS SUPERLATTICES
    SONG, JJ
    JUNG, PS
    YOON, YS
    CHU, HY
    CHANG, YC
    TU, CW
    PHYSICAL REVIEW B, 1989, 39 (08): : 5562 - 5565
  • [33] Room temperature luminescent InGaAs/GaAs core-shell nanowires
    Jabeen, F.
    Rubini, S.
    Grillo, V.
    Felisari, L.
    Martelli, F.
    APPLIED PHYSICS LETTERS, 2008, 93 (08)
  • [34] Nanostructure and strain properties of core-shell GaAs/AlGaAs nanowires
    Kehagias, Th
    Florini, N.
    Kioseoglou, J.
    Pavloudis, Th
    Komninou, Ph
    Walther, T.
    Moratis, K.
    Hatzopoulos, Z.
    Pelekanos, N. T.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (11)
  • [35] Nonlocal Dielectric Effects in Core-Shell Nanowires
    McMahon, Jeffrey M.
    Gray, Stephen K.
    Schatz, George C.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (38): : 15903 - 15908
  • [36] Structure and device characteristic of AlxGa1-x/GaAs solar cells
    Inst of Semiconducors, Chinese Acad of Sciences, Beijing, China
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 1996, 24 (05): : 34 - 37
  • [37] Band structures and spatial carrier confinement in GaAs/GaP core-shell nanowires: Core/shell composition and size effects
    Yang, Xiaodong
    Shu, Haibo
    Chen, Xiaoshuang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 682 : 571 - 578
  • [38] INTERFACE VIBRATIONAL RAMAN LINES IN GAAS/ALXGA1-X AS SUPERLATTICES
    ARORA, AK
    RAMDAS, AK
    MELLOCH, MR
    OTSUKA, N
    PHYSICAL REVIEW B, 1987, 36 (02): : 1021 - 1024
  • [39] Incorporation of Be dopant in GaAs core and core-shell nanowires by molecular beam epitaxy
    Ojha, Sai Krishna
    Kasanaboina, Pavan Kumar
    Reynolds, Claude Lewis, Jr.
    Rawdanowicz, Thomas A.
    Liu, Yang
    White, Ryan M.
    Iyer, Shanthi
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2016, 34 (02):
  • [40] Defect formation in GaAs/GaNxAs1-x core/shell nanowires
    Stehr, J. E.
    Chen, S. L.
    Jansson, M.
    Ishikawa, F.
    Chen, W. M.
    Buyanova, I. A.
    APPLIED PHYSICS LETTERS, 2016, 109 (20)