The alternating segment Crank-Nicolson method for solving convection-diffusion equation with variable coefficient

被引:0
|
作者
Wang, WQ [1 ]
机构
[1] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
关键词
convection-diffusion equation; alternating segment method; Crank-Nicolson scheme; asymmetries difference scheme; unconditionally stable; parallel computing;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new discrete approximation to the convection term of the covection-diffusion equation vas constructed in Saul' yev type difference scheme, then the alternating segment Crank-Nicolson ( ASC-N) method for solving the convection-diffusion equation with variable coefficient vas developed. The ASC-N method is unconditionally stable. Numerical experiment shows that this method has the obvious property of parallelism and accuracy. The method can be used directly on parallel computers.
引用
收藏
页码:32 / 42
页数:11
相关论文
共 50 条
  • [31] Fourth-Order Crank-Nicolson Solution for Solving Diffusion Equation Using MSOR Iteration
    Muhiddin, Fatihah Anas
    Sulaiman, Jumat
    [J]. ADVANCED SCIENCE LETTERS, 2018, 24 (03) : 1912 - 1916
  • [32] A new parallel difference algorithm based on improved alternating segment Crank-Nicolson scheme for time fractional reaction-diffusion equation
    Yang, Xiaozhong
    Dang, Xu
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [33] Stability and convergence of the Crank-Nicolson scheme for a class of variable-coefficient tempered fractional diffusion equations
    Wei Qu
    Yong Liang
    [J]. Advances in Difference Equations, 2017
  • [34] Qualitative Analysis of the Crank-Nicolson Method for the Heat Conduction Equation
    Farago, Istvan
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS: 4TH INTERNATIONAL CONFERENCE, NAA 2008, 2009, 5434 : 44 - 55
  • [35] Stability and convergence of the Crank-Nicolson scheme for a class of variable-coefficient tempered fractional diffusion equations
    Qu, Wei
    Liang, Yong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [36] An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations
    Mu, M
    Huang, YQ
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) : 1740 - 1761
  • [37] Numerical Solution of Schrödinger Equation by Crank-Nicolson Method
    Khan, Amin
    Ahsan, Muhammad
    Bonyah, Ebenezer
    Jan, Rashid
    Nisar, Muhammad
    Abdel-Aty, Abdel-Haleem
    Yahia, Ibrahim S.
    [J]. Mathematical Problems in Engineering, 2022, 2022
  • [38] A numerical method based on Crank-Nicolson scheme for Burgers' equation
    Kadalbajoo, Mohan. K.
    Awasthi, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1430 - 1442
  • [39] APPLICATION OF CRANK-NICOLSON METHOD TO A RANDOM COMPONENT HEAT EQUATION
    Anac, Halil
    Merdan, Mehmet
    Kesemen, Tulay
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2020, 38 (01): : 475 - 480
  • [40] Skeletonization Accelerated Solution of Crank-Nicolson Method for Solving Three-Dimensional Parabolic Equation
    Rasool, Hafiz Faiz
    Jun, Chen
    Pan, Xiao-Min
    Sheng, Xin-Qing
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2020, 35 (09): : 1006 - 1011