Fourth-Order Crank-Nicolson Solution for Solving Diffusion Equation Using MSOR Iteration

被引:0
|
作者
Muhiddin, Fatihah Anas [1 ]
Sulaiman, Jumat [2 ]
机构
[1] Univ Teknol MARA Cawangan Sabah, Fac Comp & Math Sci, Kota Kinabalu, Sabah, Malaysia
[2] Univ Malaysia Sabah, Math Econ Programme, Kota Kinabalu, Sabah, Malaysia
关键词
Fourth-Order; Crank-Nicolson; Finite Difference Diffusion Equation; Iterative Method; FINITE-DIFFERENCE SCHEMES; COMBINATION TECHNIQUE;
D O I
10.1166/asl.2018.11187
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, numerous applications in engineering, sciences and economics can be modeled into diffusion equations problems. In this paper, we investigate the effectiveness of the Modified Successive Over-Relaxation (MSOR) iterative method in solving linear system generated from discretization of one-dimensional diffusion equation using fourth-order Crank-Nicolson discretization scheme. In order to access the performance results of the proposed iterative method with the fourth-order Crank-Nicolson scheme, other point iterative methods which are Gauss-Seidel (GS) and Successive Over-Relaxation (SOR) also presented as reference method. Finally the numerical results obtained from the use of the fourth-order Crank-Nicolson discretization scheme, it can be pointed out that the MSOR iterative method is superior in terms of number of iterations, execution time, and maximum absolute error.
引用
收藏
页码:1912 / 1916
页数:5
相关论文
共 50 条
  • [1] Performance Analysis of Fourth-Order Crank-Nicolson Scheme for Solving Diffusion Equations
    Muhiddin, Fatihah Anas
    Sulaiman, Jumat
    [J]. PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [2] Fourth-order numerical solutions of diffusion equation by using SOR method with Crank-Nicolson approach
    Muhiddin, F. A.
    Sulaiman, J.
    [J]. 1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [3] Local Crank-Nicolson Method for Solving the Nonlinear Diffusion Equation
    Abduwali, Abdurishit
    Kohno, Toshiyuki
    Niki, Hiroshi
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (02): : 165 - 169
  • [4] Crank-Nicolson method for solving uncertain heat equation
    Liu, Jin
    Hao, Yifei
    [J]. SOFT COMPUTING, 2022, 26 (03) : 937 - 945
  • [5] A generalized Crank-Nicolson method for the solution of the subdiffusion equation
    Blasik, Marek
    [J]. 2018 23RD INTERNATIONAL CONFERENCE ON METHODS & MODELS IN AUTOMATION & ROBOTICS (MMAR), 2018, : 726 - 729
  • [6] Numerical Solution of Schrodinger Equation by Crank-Nicolson Method
    Khan, Amin
    Ahsan, Muhammad
    Bonyah, Ebenezer
    Jan, Rashid
    Nisar, Muhammad
    Abdel-Aty, Abdel-Haleem
    Yahia, Ibrahim S.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [7] Numerical Solution of Schrodinger Equation by Crank-Nicolson Method
    Khan, Amin
    Ahsan, Muhammad
    Bonyah, Ebenezer
    Jan, Rashid
    Nisar, Muhammad
    Abdel-Aty, Abdel-Haleem
    Yahia, Ibrahim S.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [8] Crank-Nicolson Scheme for Solving the Modified Nonlinear Schrodinger Equation
    Alanazi, A. A.
    Alamri, Sultan Z.
    Shafie, S.
    Puzi, Shazirawati Mohd
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (08) : 2789 - 2817
  • [9] ON NUMERICAL SCHEMES OF THE CRANK-NICOLSON TYPE FOR THE CYLINDRICAL DIFFUSION EQUATION
    BENZARTY, O
    [J]. UTILITAS MATHEMATICA, 1985, 28 : 151 - 157
  • [10] The alternating segment crank-nicolson method for solving convection-diffusion equation with variable coefficient
    Wang Wen-qia
    [J]. Applied Mathematics and Mechanics, 2003, 24 (1) : 32 - 42