Fractional-Order Model of DC Motor

被引:12
|
作者
Cipin, R. [1 ]
Ondrusek, C. [1 ]
Huzlik, R. [1 ]
机构
[1] Brno Univ Technol, Fac Elect Engn & Commun, Brno 61600, Czech Republic
关键词
D O I
10.1007/978-3-319-02294-9_46
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article deals with application of fractional calculus in a model of a DC motor. The basic assumption of fractional calculus is that the classical derivative can be generalized to non-integer one. The basic definitions of fractional calculus are presented. The fractional model of DC motor is simulated by a numerical scheme based on a Grunwald-Letnikov derivative. Possible usage of fractional calculus is shown for modeling a friction in electric machines.
引用
收藏
页码:363 / 370
页数:8
相关论文
共 50 条
  • [41] Synchronization of the Fractional-Order Brushless DC Motors Chaotic System
    Shen, Shiyun
    Zhou, Ping
    JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2016, 2016
  • [42] Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases
    Izadi, Mohammad
    Srivastava, H. M.
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [43] Fractional-order ADRC framework for fractional-order parallel systems
    Li, Zong-yang
    Wei, Yi-heng
    Wang, Jiachang
    Li, Aug
    Wang, Jianli
    Wang, Yong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1813 - 1818
  • [44] Stabilization Criterion of Fractional-Order PDμ Controllers for Interval Fractional-Order Plants with One Fractional-Order Term
    Gao, Zhe
    Cai, Xiaowu
    Zhai, Lirong
    Liu, Ting
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10424 - 10430
  • [45] Synchronization in a fractional-order model of pancreatic -cells
    Zambrano-Serrano, E.
    Munoz-Pacheco, J. M.
    Gomez-Pavon, L. C.
    Luis-Ramos, A.
    Chen, G.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (7-9): : 907 - 919
  • [46] Fractional-Order Model of a Commercial Ear Simulator
    Vastarouchas, Costas
    Psychalinos, Costas
    Elwakil, Ahmed S.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [47] Fractional-order dynamical model for electricity markets
    Dassios, Ioannis
    Kerci, Taulant
    Baleanu, Dumitru
    Milano, Federico
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 8349 - 8361
  • [48] Bifurcation analysis of fractional-order VD model
    Ramesh, P.
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2021, 11 (5-6) : 542 - 565
  • [49] PEMFC Fractional-order Subspace Identification Model
    Sun Chengshuo
    Qi Zhidong
    Qin Hao
    Shan Liang
    CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2022, 24 (03) : 151 - 160
  • [50] HIV/AIDS epidemic fractional-order model
    Zafar, Zain Ul Abadin
    Rehan, Kashif
    Mushtaq, M.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (07) : 1298 - 1315