Fractional-Order Model of DC Motor

被引:12
|
作者
Cipin, R. [1 ]
Ondrusek, C. [1 ]
Huzlik, R. [1 ]
机构
[1] Brno Univ Technol, Fac Elect Engn & Commun, Brno 61600, Czech Republic
关键词
D O I
10.1007/978-3-319-02294-9_46
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article deals with application of fractional calculus in a model of a DC motor. The basic assumption of fractional calculus is that the classical derivative can be generalized to non-integer one. The basic definitions of fractional calculus are presented. The fractional model of DC motor is simulated by a numerical scheme based on a Grunwald-Letnikov derivative. Possible usage of fractional calculus is shown for modeling a friction in electric machines.
引用
收藏
页码:363 / 370
页数:8
相关论文
共 50 条
  • [11] Stabilization of a fractional-order chaotic brushless DC motor via a single input
    Zhou, Ping
    Bai, Rong-ji
    Zheng, Ji-ming
    NONLINEAR DYNAMICS, 2015, 82 (1-2) : 519 - 525
  • [12] Analogue Implementation of a Fractional-Order PIλ Controller for DC Motor Speed Control
    Herencsar, Norbert
    Kartci, Aslihan
    Koton, Jaroslav
    Sotner, Roman
    Alogoz, Baris Baykant
    Yeroglu, Calaleddin
    2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 467 - 472
  • [13] Design and Tuning of Digital Fractional-Order PID Controller for Permanent Magnet DC Motor
    Patil, Manoj Dhondiram
    Vadirajacharya, K.
    Khubalkar, Swapnil W.
    IETE JOURNAL OF RESEARCH, 2023, 69 (07) : 4349 - 4359
  • [14] Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop
    Tepljakov, Aleksei
    Gonzalez, Emmanuel A.
    Petlenkov, Eduard
    Belikov, Jun
    Monje, Concepcion A.
    Petras, Ivo
    ISA TRANSACTIONS, 2016, 60 : 262 - 273
  • [15] Fractional-Order P2Dβ Controller for Uncertain Parameter DC Motor
    Mitkowski, Wojciech
    Oprzedkiewicz, Krzysztof
    ADVANCES IN THE THEORY AND APPLICATIONS OF NON-INTEGER ORDER SYSTEMS, 2013, 257 : 249 - 259
  • [16] Fractional-Order Traveling Wave Approximations for a Fractional-Order Neural Field Model
    Gonzalez-Ramirez, Laura R.
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16
  • [17] Comparison of Varied Order for Fractional-Order Model
    Yusof, Nuzaihan Mhd
    Ishak, Norlela
    Adnan, Ramli
    Tajuddin, Mazidah
    Rahiman, Mohd Hezri Fazalul
    2016 IEEE 12TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA), 2016, : 334 - 339
  • [18] Hybrid Fuzzy Fractional-Order PID-Based Speed Control for Brushless DC Motor
    M. A Mohammed Eltoum
    A. Hussein
    M. A. Abido
    Arabian Journal for Science and Engineering, 2021, 46 : 9423 - 9435
  • [19] Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak
    Veisi, Amir
    Delavari, Hadi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3479 - 3496
  • [20] Hybrid Fuzzy Fractional-Order PID-Based Speed Control for Brushless DC Motor
    Mohammed Eltoum, M.
    Hussein, A.
    Abido, M. A.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (10) : 9423 - 9435