A data-driven statistical model for predicting the critical temperature of a superconductor

被引:152
|
作者
Hamidieh, Kam [1 ]
机构
[1] Univ Penn, Wharton Sch, Stat Dept, 400 Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
关键词
Superconductivity; Superconductor; Machine learning; Statistical learning; Data mining; Critical temperature;
D O I
10.1016/j.commatsci.2018.07.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor's chemical formula. The statistical model gives reasonable out-of-sample predictions: +/- 9.5 K based on root-mean-squared-error. Features extracted based on thermal conductivity, atomic radius, valence, electron affinity, and atomic mass contribute the most to the model's predictive accuracy. It is crucial to note that our model does not predict whether a material is a superconductor or not; it only gives predictions for superconductors.
引用
收藏
页码:346 / 354
页数:9
相关论文
共 50 条
  • [41] Exploiting Expertise Rules for Statistical Data-Driven Modeling
    Jian, Ling
    Li, Jundong
    Luo, Shihua
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (11) : 8647 - 8656
  • [42] A data-driven regularization strategy for statistical CT reconstruction
    Clark, D. P.
    Badea, C. T.
    MEDICAL IMAGING 2017: PHYSICS OF MEDICAL IMAGING, 2017, 10132
  • [43] An Advanced Statistical Approach to Data-Driven Earthquake Engineering
    Song, Ikkyun
    Cho, In Ho
    Wong, Raymond K. W.
    JOURNAL OF EARTHQUAKE ENGINEERING, 2020, 24 (08) : 1245 - 1269
  • [44] Data-driven statistical optimization of a groundwater monitoring network
    Meggiorin, Mara
    Naranjo-Fernandez, Nuria
    Passadore, Giulia
    Sottani, Andrea
    Botter, Gianluca
    Rinaldo, Andrea
    JOURNAL OF HYDROLOGY, 2024, 631
  • [45] Predicting the evolution of Escherichia coli by a data-driven approach
    Wang, Xiaokang
    Zorraquino, Violeta
    Kim, Minseung
    Tsoukalas, Athanasios
    Tagkopoulos, Ilias
    NATURE COMMUNICATIONS, 2018, 9
  • [46] Statistical Performance Analysis of Data-Driven Neural Models
    Freestone, Dean R.
    Layton, Kelvin J.
    Kuhlmann, Levin
    Cook, Mark J.
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2017, 27 (01)
  • [47] Data-driven nonlinear expectations for statistical uncertainty in decisions
    Cohen, Samuel N.
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 1858 - 1889
  • [48] Predicting heterogeneous ice nucleation with a data-driven approach
    Fitzner, Martin
    Pedevilla, Philipp
    Michaelides, Angelos
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [49] Multiple data-driven approach for predicting landslide deformation
    Li, S. H.
    Wu, L. Z.
    Chen, J. J.
    Huang, R. Q.
    LANDSLIDES, 2020, 17 (03) : 709 - 718
  • [50] Predicting the evolution of Escherichia coli by a data-driven approach
    Xiaokang Wang
    Violeta Zorraquino
    Minseung Kim
    Athanasios Tsoukalas
    Ilias Tagkopoulos
    Nature Communications, 9