A data-driven statistical model for predicting the critical temperature of a superconductor

被引:152
|
作者
Hamidieh, Kam [1 ]
机构
[1] Univ Penn, Wharton Sch, Stat Dept, 400 Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
关键词
Superconductivity; Superconductor; Machine learning; Statistical learning; Data mining; Critical temperature;
D O I
10.1016/j.commatsci.2018.07.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor's chemical formula. The statistical model gives reasonable out-of-sample predictions: +/- 9.5 K based on root-mean-squared-error. Features extracted based on thermal conductivity, atomic radius, valence, electron affinity, and atomic mass contribute the most to the model's predictive accuracy. It is crucial to note that our model does not predict whether a material is a superconductor or not; it only gives predictions for superconductors.
引用
收藏
页码:346 / 354
页数:9
相关论文
共 50 条
  • [21] Statistical Reliability of Data-Driven Science and Technology
    Takeuchi, Ichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025,
  • [22] Data-driven approaches for predicting wax deposition
    Ahmadi, Mohammadali
    ENERGY, 2023, 265
  • [23] A data-driven hysteresis model
    Ikhouane, Faycal
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (09):
  • [24] A data-driven reflectance model
    Matusik, W
    Pfister, H
    Brand, M
    McMillan, L
    ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03): : 759 - 769
  • [25] Data-driven cranial suture growth model enables predicting phenotypes of craniosynostosis
    Liu, Jiawei
    Froelicher, Joseph H.
    French, Brooke
    Linguraru, Marius George
    Porras, Antonio R.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [26] A Data-Driven Probabilistic Trajectory Model for Predicting and Simulating Terminal Airspace Operations
    Rocha Murca, Mayara Conde
    de Oliveira, McWillian
    2020 AIAA/IEEE 39TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC) PROCEEDINGS, 2020,
  • [27] Predicting Anion Redox in Secondary Battery Cathode Materials with a Data-Driven Model
    Grundish, Nicholas S.
    Ransom, Brandi
    Sendek, Austin D.
    Pellouchoud, Lenson A.
    Li, Yutao
    Reed, Evan J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (40): : 16844 - 16853
  • [28] Virtual Energy Auditing: A Data-Driven Model for Predicting EnerGuide Rating System
    Bahiraei, Farid
    Ashouri, Araz
    Shillinglaw, Scott
    McLellan, Christopher
    ASHRAE TRANSACTIONS 2022, VOL 128, PT 2, 2022, 128 : 563 - 572
  • [29] Data-Driven and Mechanistic Hybrid Model for Predicting Oxygen Consumption in BOF Steelmaking
    Li, Peng
    Zhan, Dongping
    Wang, Bo
    Wang, Mingxin
    Yang, Naihui
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2025,
  • [30] Data-driven cranial suture growth model enables predicting phenotypes of craniosynostosis
    Jiawei Liu
    Joseph H. Froelicher
    Brooke French
    Marius George Linguraru
    Antonio R. Porras
    Scientific Reports, 13 (1)