A data-driven statistical model for predicting the critical temperature of a superconductor

被引:152
|
作者
Hamidieh, Kam [1 ]
机构
[1] Univ Penn, Wharton Sch, Stat Dept, 400 Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
关键词
Superconductivity; Superconductor; Machine learning; Statistical learning; Data mining; Critical temperature;
D O I
10.1016/j.commatsci.2018.07.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We estimate a statistical model to predict the superconducting critical temperature based on the features extracted from the superconductor's chemical formula. The statistical model gives reasonable out-of-sample predictions: +/- 9.5 K based on root-mean-squared-error. Features extracted based on thermal conductivity, atomic radius, valence, electron affinity, and atomic mass contribute the most to the model's predictive accuracy. It is crucial to note that our model does not predict whether a material is a superconductor or not; it only gives predictions for superconductors.
引用
收藏
页码:346 / 354
页数:9
相关论文
共 50 条
  • [1] A Statistical Quality Model for Data-Driven Speech Animation
    Ma, Xiaohan
    Deng, Zhigang
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (11) : 1915 - 1927
  • [2] A data-driven model for predicting the effect of temperature on oil-water relative permeability
    Esmaeili, Sajjad
    Sarma, Hemanta
    Harding, Thomas
    Maini, Brij
    FUEL, 2019, 236 : 264 - 277
  • [3] A Dynamic Data-driven Model for Predicting Strip Temperature in Continuous Annealing Line Heating Process
    Zhang, Yongyue
    Jin, Yali
    Cao, Weihua
    Li, Zezhong
    Yuan, Yan
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1887 - 1891
  • [4] Data-driven digital twin model for predicting grinding force
    Qi, B.
    Park, H-S
    MODTECH INTERNATIONAL CONFERENCE - MODERN TECHNOLOGIES IN INDUSTRIAL ENGINEERING VIII, 2020, 916
  • [5] Data-driven model for predicting production periods in the SAGD process
    Huang, Ziteng
    Yang, Min
    Yang, Bo
    Liu, Wei
    Chen, Zhangxin
    PETROLEUM, 2022, 8 (03) : 363 - 374
  • [6] Data-driven model for predicting production periods in the SAGD process
    Ziteng Huang
    Min Yang
    Bo Yang
    Wei Liu
    Zhangxin Chen
    Petroleum, 2022, (03) : 363 - 374
  • [7] A Data-driven Analysis of a Cloud Data Center: Statistical Characterization ofWorkload, Energy and Temperature
    Ilager, Shashikant
    Toosi, Adel N.
    Jha, Mayank Raj
    Brandic, Ivona
    Buyya, Rajkumar
    16TH IEEE/ACM INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING, UCC 2023, 2023,
  • [8] Predicting Vehicle Motion in Shallow Water with Data-Driven Hydrodynamics Model
    Yamashita, Hiroki
    Martin, Juan E.
    Sugiyama, Hiroyuki
    Tison, Nathan
    Grunin, Arkady
    Jayakumar, Paramsothy
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 10, 2023,
  • [9] A novel data-driven dynamical model for predicting future climate trends
    Ochieng, Francis Oketch
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (04) : 4599 - 4610
  • [10] Statistical Data-Driven Model for Hardness Prediction in Austempered Ductile Irons
    Abigail Rodriguez-Rosales, Nelly
    Alan Montes-Gonzalez, Felix
    Gomez-Casas, Oziel
    Gomez-Casas, Josue
    Salvador Galindo-Valdes, Jesus
    Carlos Ortiz-Cuellar, Juan
    Fernando Martinez-Villafane, Jesus
    Garcia-Navarro, Daniel
    Rodrigo Muniz-Valdez, Carlos
    METALS, 2022, 12 (04)