The Analytical Solutions of the Stochastic Fractional Kuramoto-Sivashinsky Equation by Using the Riccati Equation Method

被引:8
|
作者
Mohammed, Wael W. [1 ,2 ]
Albalahi, A. M. [1 ]
Albadrani, S. [1 ]
Aly, E. S. [3 ]
Sidaoui, R. [1 ]
Matouk, A. E. [4 ,5 ]
机构
[1] Univ Hail, Fac Sci, Dept Math, Hail, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Jazan Univ, Fac Sci, Math Dept, Jazan 45142, Saudi Arabia
[4] Al Zulfi Majmaah Univ, Coll Sci, Dept Math, Al Majmaah 11952, Saudi Arabia
[5] Majmaah Univ, Coll Engn, Al Majmaah 11952, Saudi Arabia
关键词
SOLITARY WAVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; NONLINEAR EVOLUTION;
D O I
10.1155/2022/5083784
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we consider the stochastic fractional-space Kuramoto-Sivashinsky equation using conformable derivative. The Riccati equation method is used to get the analytical solutions to the space-fractional stochastic Kuramoto-Sivashinsky equation. Because this equation has never been examined with space-fractional and multiplicative noise at the same time, we generalize some previous results. Moreover, we display how the multiplicative noise influences on the stability of obtained solutions of the space-fractional stochastic Kuramoto-Sivashinsky equation.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] ANALYTICITY FOR THE KURAMOTO-SIVASHINSKY EQUATION
    COLLET, P
    ECKMANN, JP
    EPSTEIN, H
    STUBBE, J
    [J]. PHYSICA D, 1993, 67 (04): : 321 - 326
  • [22] A numerical method for a backward problem of a linear stochastic Kuramoto-Sivashinsky equation
    Wang, Zewen
    Wu, Bin
    [J]. RESULTS IN APPLIED MATHEMATICS, 2023, 19
  • [23] Fractional generalized Kuramoto-Sivashinsky equation: Formulation and solution
    Nazari-Golshan, Akbar
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (11):
  • [24] Controlling roughening processes in the stochastic Kuramoto-Sivashinsky equation
    Gomes, S. N.
    Kalliadasis, S.
    Papageorgiou, D. T.
    Pavliotis, G. A.
    Pradas, M.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2017, 348 : 33 - 43
  • [25] Analytical solution for the generalized Kuramoto-Sivashinsky equation by the differential transform method
    Hesam, S.
    Nazemi, A. R.
    Haghbin, A.
    [J]. SCIENTIA IRANICA, 2013, 20 (06) : 1805 - 1811
  • [26] Derivation of the Kuramoto-Sivashinsky equation using the renormalization group method
    Maruo, T
    Nozaki, K
    Yosimori, A
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1999, 101 (02): : 243 - 249
  • [27] On blow-up of solutions of the Kuramoto-Sivashinsky equation
    Pokhozhaev, S. I.
    [J]. SBORNIK MATHEMATICS, 2008, 199 (9-10) : 1355 - 1365
  • [28] Solitary and periodic solutions of the generalized Kuramoto-Sivashinsky equation
    N. A. Kudryashov
    [J]. Regular and Chaotic Dynamics, 2008, 13 : 234 - 238
  • [29] New exact solutions for the generalized Kuramoto-Sivashinsky Equation
    Liu, Jian-Guo
    Zeng, Zhi-Fang
    Ye, Qing
    [J]. PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2444 - 2447
  • [30] Asymptotic Bifurcation Solutions for Perturbed Kuramoto-Sivashinsky Equation
    Huang Qiong-Wei
    Tang Jia-Shi
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (04) : 685 - 687