New exact solutions for the generalized Kuramoto-Sivashinsky Equation

被引:0
|
作者
Liu, Jian-Guo [1 ]
Zeng, Zhi-Fang [2 ]
Ye, Qing [1 ]
机构
[1] Jiangxi Univ Tradit Chinese Med, Coll Comp, Nanchang 330004, Jiangxi, Peoples R China
[2] Jiangxi Vocat & Tech Coll Commun, Dept Basic, Nanchang 330013, Jiangxi, Peoples R China
关键词
symbolic computation; exact solutions; extended tanh-function method; Kur amoto-Sivashinsky; mathematical physics; SOLITARY WAVE SOLUTIONS; TANH-FUNCTION METHOD; BACKLUND TRANSFORMATION; BOUSSINESQ EQUATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, with symbolic computation, the generalized Kuramoto-Sivashins -ky equation which describes the fluctuations of the position of a flame front, the motion of a fluid going down a vertical wall, or a spatially uniform oscillating chemical reaction in a homogeneous medium, is studied via the extended tanh-function method. By virtue of the extended Gault-function method, new exact solutions of this equation are presented. The restrictions on the parameters are also identified. It is shown that the extended tanh-function method is a competent and influential tool in solving nonlinear partial differential equations in mathematical physics.
引用
收藏
页码:2444 / 2447
页数:4
相关论文
共 50 条
  • [1] EXACT-SOLUTIONS OF THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION
    KUDRYASHOV, NA
    [J]. PHYSICS LETTERS A, 1990, 147 (5-6) : 287 - 291
  • [2] Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation
    Li, CP
    Chen, GR
    Zhao, SC
    [J]. LATIN AMERICAN APPLIED RESEARCH, 2004, 34 (01) : 65 - 68
  • [3] Generalized solutions to the Kuramoto-Sivashinsky equation
    Biagioni, HA
    Iorio, RJ
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 6 (1-4) : 1 - 8
  • [4] The influence of the noise on the exact solutions of a Kuramoto-Sivashinsky equation
    Albosaily, Sahar
    Mohammed, Wael W.
    Rezaiguia, Ali
    El-Morshedy, Mahmoud
    Elsayed, Elsayed M.
    [J]. OPEN MATHEMATICS, 2022, 20 (01): : 108 - 116
  • [5] Solitary and periodic solutions of the generalized Kuramoto-Sivashinsky equation
    N. A. Kudryashov
    [J]. Regular and Chaotic Dynamics, 2008, 13 : 234 - 238
  • [6] Solitary and periodic solutions of the generalized Kuramoto-Sivashinsky equation
    Kudryashov, N. A.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2008, 13 (03): : 234 - 238
  • [7] An exact solution to the Kuramoto-Sivashinsky equation
    Abdel-Hamid, B
    [J]. PHYSICS LETTERS A, 1999, 263 (4-6) : 338 - 340
  • [8] Consistent Riccati expansion and exact solutions of the Kuramoto-Sivashinsky equation
    Chen, Mingxing
    Hua, Hengchun
    Zhu, Haidong
    [J]. APPLIED MATHEMATICS LETTERS, 2015, 49 : 147 - 151
  • [9] Quasi-exact solutions of the dissipative Kuramoto-Sivashinsky equation
    Kudryashov, Nikolay A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9213 - 9218
  • [10] OSCILLATIONS OF SOLUTIONS OF THE KURAMOTO-SIVASHINSKY EQUATION
    KUKAVICA, I
    [J]. PHYSICA D, 1994, 76 (04): : 369 - 374