Well-posedness in critical spaces for incompressible viscoelastic fluid system

被引:41
|
作者
Qian, Jianzhen [1 ,2 ]
机构
[1] Peking Univ, LAMA, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Local well-posedness; Global small solutions; Besov space; Oldroyd model; GLOBAL EXISTENCE;
D O I
10.1016/j.na.2009.12.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the well-posedness in critical spaces of incompressible viscoelastic fluid system of Oldroyd model. Precisely, for this system with initial data in Besov space of critical regularity, we prove the existence and uniqueness of the local solution, which is also shown to exist globally in time provided the initial data is small under certain norms. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3222 / 3234
页数:13
相关论文
共 50 条
  • [41] WELL-POSEDNESS IN CRITICAL SPACES FOR THE FULL COMPRESSIBLE MHD EQUATIONS
    Bian, Dongfen
    Guo, Boling
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 1153 - 1176
  • [42] Global well-posedness and scattering for the coupled NLS in critical spaces
    Deng, Mingming
    Wang, Ying
    APPLICABLE ANALYSIS, 2024, 103 (15) : 2728 - 2758
  • [43] On the well-posedness of the incompressible porous media equation in Triebel-Lizorkin spaces
    Wenxin Yu
    Yigang He
    Boundary Value Problems, 2014
  • [44] WELL-POSEDNESS IN CRITICAL SPACES FOR THE FULL COMPRESSIBLE MHD EQUATIONS
    边东芬
    郭柏灵
    Acta Mathematica Scientia, 2013, 33 (04) : 1153 - 1176
  • [45] Local well-posedness in critical spaces for the compressible MHD equations
    Bian, Dongfen
    Yuan, Baoquan
    APPLICABLE ANALYSIS, 2016, 95 (02) : 239 - 269
  • [46] Well-posedness for the Incompressible Hall-MHD Equations in Low Regularity Spaces
    Wu, Xing
    Yu, Yanghai
    Tang, Yanbin
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [47] On the well-posedness of the incompressible porous media equation in Triebel-Lizorkin spaces
    Yu, Wenxin
    He, Yigang
    BOUNDARY VALUE PROBLEMS, 2014,
  • [48] On the well-posedness in Besov-Herz spaces for the inhomogeneous incompressible Euler equations
    Ferreira, Lucas C. F.
    Machado, Daniel F.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 21 (01) : 1 - 29
  • [49] Well-posedness for the Incompressible Hall-MHD Equations in Low Regularity Spaces
    Xing Wu
    Yanghai Yu
    Yanbin Tang
    Mediterranean Journal of Mathematics, 2018, 15
  • [50] On the well-posedness of 2-D incompressible Navier-Stokes equations with variable viscosity in critical spaces
    Xu, Huan
    Li, Yongsheng
    Zhai, Xiaoping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) : 6604 - 6637