Comparison of the ICA and PCA Methods in Correction of EEG Signal Artefacts

被引:0
|
作者
Kaczorowska, Monika [1 ]
Plechawska-Wojcik, Malgorzata [1 ]
Tokovarov, Mikhail [1 ]
Dmytruk, Roman [1 ]
机构
[1] Lublin Univ Technol, Fac Elect Engn & Comp Sci, Inst Comp Sci, Lublin, Poland
关键词
EEG signal; Principal Component Analysis; Independent Component Analysis; BLIND SEPARATION; REMOVAL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper presents application and comparison of two methods based on the blind source separation problem: Principal Component Analysis (PCA) and Independent Component Analysis (ICA) as well as combining these methods. Both methods might be applied in the task of eliminating artefacts from the electroencefalography (EEG) signal. Such artefacts might cover eye-blinks, muscle artefacts etc. The case study described in the paper presents the results of correcting various kinds of artefacts using these methods and its comparison to manual artefact detection performed by an expert.
引用
收藏
页码:262 / 267
页数:6
相关论文
共 50 条
  • [21] Automated Detection and Correction of Eye Blink and Muscular Artefacts in EEG Signal for Analysis of Autism Spectrum Disorder
    Jadhav, P. N.
    Shanamugan, D.
    Chourasia, A.
    Ghole, A. R.
    Acharyya, A.
    Naik, G.
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 1881 - +
  • [22] EEG signal classification based on PCA and NN
    Oh, Changmok
    Kim, Min-Soeng
    Lee, Ju-Jang
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 4760 - +
  • [23] Removing electroencephalographic artifacts: Comparison between ICA and PCA
    Jung, TP
    Humphries, C
    Lee, TW
    Makeig, S
    McKeown, MJ
    Iragui, V
    Sejnowski, TJ
    NEURAL NETWORKS FOR SIGNAL PROCESSING VIII, 1998, : 63 - 72
  • [24] ICA and a gauge of filter for the automatic filtering of an EEG signal
    Bouzida, N
    Peyrodie, L
    Vasseur, C
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 2508 - 2513
  • [25] Comparison of PCA approaches for very large group ICA
    Calhoun, Vince D.
    Silva, Rogers F.
    Adali, Tuelay
    Rachakonda, Srinivas
    NEUROIMAGE, 2015, 118 : 662 - 666
  • [26] ICA Decomposition of EEG signal for fMRI Processing in Epilepsy
    Marques, Jose P.
    Rebola, Jose
    Figueiredo, Patricia
    Pinto, Alda
    Sales, Francisco
    Castelo-Branco, Miguel
    HUMAN BRAIN MAPPING, 2009, 30 (09) : 2986 - 2996
  • [27] Comparison of Three Motor Imagery EEG Signal Processing Methods
    Xiao, Dan
    ADVANCES IN MULTIMEDIA, SOFTWARE ENGINEERING AND COMPUTING, VOL 2, 2011, 129 : 503 - 508
  • [28] ECG-derived respiration methods: Adapted ICA and PCA
    Tiinanen, Suvi
    Noponen, Kai
    Tulppo, Mikko
    Kiviniemi, Antti
    Seppanen, Tapio
    MEDICAL ENGINEERING & PHYSICS, 2015, 37 (05) : 512 - 517
  • [29] EEG Signal Analysis Using PCA and Logistic Regression
    Soeiro, Celine F. C.
    XXVI BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2018, VOL. 2, 2019, 70 (02): : 175 - 180
  • [30] PCA vs. ICA: A comparison on the FERET data set
    Baek, K
    Draper, BA
    Beveridge, JR
    She, K
    PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 824 - 827