We prove sharp bounds on the discriminants of stable rank two sheaves on surfaces in three-dimensional projective space. The key technical ingredient is to study them as torsion sheaves in projective space via tilt stability in the derived category. We then proceed to describe the surface itself as a moduli space of rank two vector bundles on it. Lastly, we give a proof of the Bogomolov inequality for semistable rank two sheaves on integral surfaces in three-dimensional projective space in all characteristics.
机构:
Univ La Laguna, Dept Matemat Estadist & IO, Secc Matemat, Apartado Correos 456, San Cristobal la Laguna 38200, Tenerife, SpainUniv La Laguna, Dept Matemat Estadist & IO, Secc Matemat, Apartado Correos 456, San Cristobal la Laguna 38200, Tenerife, Spain
Garcia Barroso, Evelia R.
Hernandez Iglesias, M. Fernando
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Mayor San Marcos, Fac Ciencias Matemat, Escuela Matemat, Cercado De Lima 15081, Peru
Pontificia Univ Catolica Peru, Dept Ciencias, Secc Matemat, Av Univ,San Miguel 1801, Lima 32, PeruUniv La Laguna, Dept Matemat Estadist & IO, Secc Matemat, Apartado Correos 456, San Cristobal la Laguna 38200, Tenerife, Spain