共 50 条
Topological type of discriminants of some special families
被引:0
|作者:
Evelia R. García Barroso
M. Fernando Hernández Iglesias
机构:
[1] Universidad de La Laguna,Dpto. Matemáticas, Estadística e I.O. Sección de Matemáticas
[2] Universidad Nacional Mayor de San Marcos,Facultad de Ciencias Matemáticas, Escuela de Matemática
[3] Pontificia Universidad Católica del Perú,Dpto. Ciencias
来源:
关键词:
Discriminant curve;
Nondegenerate singularity;
Newton polygon;
Zariski invariant;
Milnor number;
Tjurina number;
Primary 14J17;
Secondary 32S15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We will describe the topological type of the discriminant curve of the morphism (ℓ,f)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\ell , f)$$\end{document}, where ℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell $$\end{document} is a smooth curve and f is an irreducible curve (branch) of multiplicity less than five or a branch such that the difference between its Milnor number and Tjurina number is less than 3. We prove that for a branch of these families, the topological type of the discriminant curve is determined by the semigroup, the Zariski invariant and at most two other analytical invariants of the branch.
引用
收藏
页码:321 / 345
页数:24
相关论文