Spin relaxation in Si nanoclusters embedded in free-standing SiGe nanocolumns

被引:2
|
作者
Stepina, N. P. [1 ]
Zinovieva, A. F. [1 ]
Dvurechenskii, A. V. [1 ,2 ]
Noda, Shuichi [3 ]
Molla, Md. Zaman [3 ,5 ]
Samukawa, Seiji [3 ,4 ]
机构
[1] Inst Semicond Phys, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan
[4] Tohoku Univ, AIMR, Sendai, Miyagi 9808577, Japan
[5] Ahsanullah Univ Sci & Technol, Dhaka 1208, Bangladesh
关键词
SILICON; RESONANCE;
D O I
10.1063/1.4983644
中图分类号
O59 [应用物理学];
学科分类号
摘要
Separated nanocolumns (NCs) with embedded Si nanoclusters were prepared using the top-down technique that combines a bio-template and the defect-free neutral beam etching of Si0.75Ge0.25/Si/ Si0.75Ge0.25 double-quantum-well layers. The electron spin resonance (ESR) was studied in the dark and under illumination for the structures with different lateral sizes of NCs. For the structure with a NC diameter in the range of 20-25 nm, the ESR signal is characterized by the isotropic line width. The spatial separation of nanoclusters results in the suppression of the Dyakonov-Perel mechanism of spin relaxation. A decrease in the NC diameter down to 13-14 nm leads to electron localization under the bottom of NCs, making the orientation dependence of the ESR line width anisotropic. Illumination results in the increase in spin lifetimes in both the types of NC structures, relocating the electrons to the center of NCs in the narrow NC structure, and making electron localization stronger in the thick NCs. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Free-Standing Si and Ge, and Ge/Si Core-Shell Semiconductor Nanowires
    Peelaers, H.
    Partoens, B.
    Peeters, F. M.
    ACTA PHYSICA POLONICA A, 2012, 122 (02) : 294 - 298
  • [22] Hole spin relaxation in [001] strained asymmetric Si/SiGe and Ge/SiGe quantum wells
    Zhang, P.
    Wu, M. W.
    PHYSICAL REVIEW B, 2009, 80 (15)
  • [23] Spin-spiral structures in free-standing Fe(110) monolayers
    Nakamura, Kohji
    Mizuno, Naoki
    Akiyama, Toru
    Ito, Tomonori
    Freeman, A.J.
    Journal of Applied Physics, 2006, 99 (08):
  • [24] Spin-spiral structures in free-standing Fe(110) monolayers
    Nakamura, Kohji
    Mizuno, Naoki
    Akiyama, Toru
    Ito, Tomonori
    Freeman, A. J.
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
  • [25] Measurement of strain and strain relaxation in free-standing Si membranes by convergent beam electron diffraction and finite element method
    Gao, H.
    Ikeda, K.
    Hata, S.
    Nakashima, H.
    Wang, D.
    Nakashima, H.
    ACTA MATERIALIA, 2011, 59 (07) : 2882 - 2890
  • [26] Photoluminescence and Raman spectroscopy study on oxidized free-standing porous Si
    Wang, ST
    Xu, DS
    Guo, GL
    Qin, GG
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2000, 182 (01): : 359 - 362
  • [27] Fully coherent growth of Ge on free-standing Si(001) nanomesas
    Montalenti, F.
    Salvalaglio, M.
    Marzegalli, A.
    Zaumseil, P.
    Capellini, G.
    Schuelli, T. U.
    Schubert, M. A.
    Yamamoto, Y.
    Tillack, B.
    Schroeder, T.
    PHYSICAL REVIEW B, 2014, 89 (01)
  • [28] Heterostructures in GaP-based free-standing nanowires on Si substrates
    Tateno, Kouta
    Zhang, Guoqiang
    Nakano, Hidetoshi
    QUANTUM DOTS, PARTICLES, AND NANOCLUSTERS VI, 2009, 7224
  • [29] Free-standing nanolayers based on Ru silicide formation on Si(100)
    Troglia, Alessandro
    van Vliet, Stefan
    Yetik, Gorsel
    El Wakil, Ibrahim
    Momand, Jamo
    Kooi, Bart J.
    Bliem, Roland
    PHYSICAL REVIEW MATERIALS, 2022, 6 (04)
  • [30] Free-standing graphene films embedded in epoxy resin with enhanced thermal properties
    Izaskun Bustero
    Idoia Gaztelumendi
    Isabel Obieta
    María Asun Mendizabal
    Amaia Zurutuza
    Amaya Ortega
    Beatriz Alonso
    Advanced Composites and Hybrid Materials, 2020, 3 : 31 - 40