Spin relaxation in Si nanoclusters embedded in free-standing SiGe nanocolumns

被引:2
|
作者
Stepina, N. P. [1 ]
Zinovieva, A. F. [1 ]
Dvurechenskii, A. V. [1 ,2 ]
Noda, Shuichi [3 ]
Molla, Md. Zaman [3 ,5 ]
Samukawa, Seiji [3 ,4 ]
机构
[1] Inst Semicond Phys, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan
[4] Tohoku Univ, AIMR, Sendai, Miyagi 9808577, Japan
[5] Ahsanullah Univ Sci & Technol, Dhaka 1208, Bangladesh
关键词
SILICON; RESONANCE;
D O I
10.1063/1.4983644
中图分类号
O59 [应用物理学];
学科分类号
摘要
Separated nanocolumns (NCs) with embedded Si nanoclusters were prepared using the top-down technique that combines a bio-template and the defect-free neutral beam etching of Si0.75Ge0.25/Si/ Si0.75Ge0.25 double-quantum-well layers. The electron spin resonance (ESR) was studied in the dark and under illumination for the structures with different lateral sizes of NCs. For the structure with a NC diameter in the range of 20-25 nm, the ESR signal is characterized by the isotropic line width. The spatial separation of nanoclusters results in the suppression of the Dyakonov-Perel mechanism of spin relaxation. A decrease in the NC diameter down to 13-14 nm leads to electron localization under the bottom of NCs, making the orientation dependence of the ESR line width anisotropic. Illumination results in the increase in spin lifetimes in both the types of NC structures, relocating the electrons to the center of NCs in the narrow NC structure, and making electron localization stronger in the thick NCs. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Compliant substrate versus plastic relaxation effects in Ge nanoheteroepitaxy on free-standing Si(001) nanopillars
    Kozlowski, G.
    Zaumseil, P.
    Schubert, M. A.
    Yamamoto, Y.
    Bauer, J.
    Matejova, J.
    Schulli, T.
    Tillack, B.
    Schroeder, T.
    APPLIED PHYSICS LETTERS, 2011, 99 (14)
  • [12] Rotational relaxation processes in free-standing thin SmC films
    Zakharov, A. V.
    Vakulenko, A. A.
    PHYSICS OF THE SOLID STATE, 2016, 58 (01) : 190 - 198
  • [13] Shear-stress relaxation in free-standing polymer films
    George, G.
    Kriuchevskyi, I
    Meyer, H.
    Baschnagel, J.
    Wittmer, J. P.
    PHYSICAL REVIEW E, 2018, 98 (06)
  • [14] Rotational relaxation processes in free-standing thin SmC films
    A. V. Zakharov
    A. A. Vakulenko
    Physics of the Solid State, 2016, 58 : 190 - 198
  • [15] The first free-standing 1D spin chain
    Li, Jiaruo
    Comin, Riccardo
    MATTER, 2023, 6 (08) : 2576 - 2578
  • [16] AFM-based fabrication of free-standing Si nanostructures
    Snow, ES
    Campbell, PM
    McMarr, PJ
    NANOTECHNOLOGY, 1996, 7 (04) : 434 - 437
  • [17] Growth of free-standing GaN layer on Si(111) substrate
    Yang, Tsung Hsi
    Ku, Jui Tai
    Chang, Jet-Rung
    Shen, Shih-Guo
    Chen, Yi-Cheng
    Wong, Yuen Yee
    Chou, Wu Ching
    Chen, Chien-Ying
    Chang, Chun-Yen
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (07) : 1997 - 2001
  • [18] Stability and magnetization of free-standing and graphene-embedded iron membranes
    Thomsen, M. R.
    Brun, S. J.
    Pedersen, T. G.
    PHYSICAL REVIEW B, 2015, 91 (12)
  • [19] Are Embedded Validity Indices Equivalent to Free-Standing Symptom Validity Tests?
    Miele, Andrea S.
    Gunner, Jessica H.
    Lynch, Julie K.
    McCaffrey, Robert J.
    ARCHIVES OF CLINICAL NEUROPSYCHOLOGY, 2012, 27 (01) : 10 - 22
  • [20] Stress relaxation of free-standing aluminum beams for microelectromechanical systems applications
    Lee, HJ
    Cornella, G
    Bravman, JC
    APPLIED PHYSICS LETTERS, 2000, 76 (23) : 3415 - 3417