Spin relaxation in Si nanoclusters embedded in free-standing SiGe nanocolumns

被引:2
|
作者
Stepina, N. P. [1 ]
Zinovieva, A. F. [1 ]
Dvurechenskii, A. V. [1 ,2 ]
Noda, Shuichi [3 ]
Molla, Md. Zaman [3 ,5 ]
Samukawa, Seiji [3 ,4 ]
机构
[1] Inst Semicond Phys, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan
[4] Tohoku Univ, AIMR, Sendai, Miyagi 9808577, Japan
[5] Ahsanullah Univ Sci & Technol, Dhaka 1208, Bangladesh
关键词
SILICON; RESONANCE;
D O I
10.1063/1.4983644
中图分类号
O59 [应用物理学];
学科分类号
摘要
Separated nanocolumns (NCs) with embedded Si nanoclusters were prepared using the top-down technique that combines a bio-template and the defect-free neutral beam etching of Si0.75Ge0.25/Si/ Si0.75Ge0.25 double-quantum-well layers. The electron spin resonance (ESR) was studied in the dark and under illumination for the structures with different lateral sizes of NCs. For the structure with a NC diameter in the range of 20-25 nm, the ESR signal is characterized by the isotropic line width. The spatial separation of nanoclusters results in the suppression of the Dyakonov-Perel mechanism of spin relaxation. A decrease in the NC diameter down to 13-14 nm leads to electron localization under the bottom of NCs, making the orientation dependence of the ESR line width anisotropic. Illumination results in the increase in spin lifetimes in both the types of NC structures, relocating the electrons to the center of NCs in the narrow NC structure, and making electron localization stronger in the thick NCs. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Elastic strain relaxation in free-standing SiGe/Si structures
    Mooney, PM
    Cohen, GM
    Chu, JO
    Murray, CE
    APPLIED PHYSICS LETTERS, 2004, 84 (07) : 1093 - 1095
  • [2] The role of SiGe buffer in growth and relaxation of Ge on free-standing Si(001) nano-pillars
    Zaumseil, P.
    Kozlowski, G.
    Schubert, M. A.
    Yamamoto, Y.
    Bauer, J.
    Schuelli, T. U.
    Tillack, B.
    Schroeder, T.
    NANOTECHNOLOGY, 2012, 23 (35)
  • [3] Effect of an elastic substrate on buckling of free-standing nanocolumns
    Wu, J. X.
    Li, X. F.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (04): : 396 - 405
  • [4] Free-standing SiGe-based nanopipelines on Si (001) substrates
    Schmidt, OG
    Jin-Phillipp, NY
    APPLIED PHYSICS LETTERS, 2001, 78 (21) : 3310 - 3312
  • [5] Free-standing Si/SiGe micro- and nano-objects
    Zhang, L
    Golod, SV
    Deckardt, E
    Prinz, V
    Grützmacher, D
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 23 (3-4): : 280 - 284
  • [6] Local-fields and disorder effects in free-standing and embedded Si nanocrystallites
    Guerra, Roberto
    Degoli, Elena
    Marsili, Margherita
    Pulci, Olivia
    Ossicini, Stefano
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (08): : 2113 - 2117
  • [7] Growth and relaxation processes in Ge nanocrystals on free-standing Si(001) nanopillars
    Kozlowski, G.
    Zaumseil, P.
    Schubert, M. A.
    Yamamoto, Y.
    Bauer, J.
    Schuelli, T. U.
    Tillack, B.
    Schroeder, T.
    NANOTECHNOLOGY, 2012, 23 (11)
  • [8] Stress relaxation in free-standing aluminum beams
    Lee, HJ
    Zhang, P
    Bravman, JC
    THIN SOLID FILMS, 2005, 476 (01) : 118 - 124
  • [9] CONTRASTING BEHAVIOR OF FREE-STANDING AND EMBEDDED MAGNETIC NANOPARTICLES
    Cojocaru, S.
    ROMANIAN REPORTS IN PHYSICS, 2013, 65 (03) : 832 - 840
  • [10] Grazing incidence small-angle x-ray scattering study of buried and free-standing SiGe islands in a SiGe/Si superlattice
    Stangl, J
    Holy, V
    Roch, T
    Daniel, A
    Bauer, G
    Zhu, J
    Brunner, K
    Abstreiter, G
    PHYSICAL REVIEW B, 2000, 62 (11): : 7229 - 7236