Pascal's theorem and quantum deformation

被引:0
|
作者
Leitenberger, F [1 ]
机构
[1] Univ Rostock, Fachbereich Math, D-18051 Rostock, Germany
关键词
invariant theory; Pascal's theorem; quantum groups;
D O I
10.1023/A:1007615320304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By a transfer principle, Pascal's Theorem is equivalent to a theorem about point pairs on the real line. It appears that Pascal's Theorem is equivalent to the vanishing of a common invariant of six quadratic forms. Using the q-deformed invariant theory of Leitenberger (J. Algebra 222 (1999), 82), we construct corresponding quantum invariants by a computer calculation.
引用
收藏
页码:47 / 53
页数:7
相关论文
共 50 条
  • [1] Pascal's Theorem and Quantum Deformation
    Frank Leitenberger
    Letters in Mathematical Physics, 2000, 51 : 47 - 53
  • [2] Pascal's Theorem
    Tabirca, Sabin
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (10): : 1052 - 1052
  • [3] An extension of Pascal's theorem
    Rupp, Charles A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1929, 31 (1-4) : 580 - 594
  • [4] Demonstation of Desargues' theorem on the basis of Pascal's theorem
    Hessenberg, G
    MATHEMATISCHE ANNALEN, 1905, 61 : 0161 - 0172
  • [5] A Hyperbolic Proof of Pascal’s Theorem
    Miguel Acosta
    Jean-Marc Schlenker
    The Mathematical Intelligencer, 2021, 43 : 130 - 133
  • [6] A Hyperbolic Proof of Pascal's Theorem
    Acosta, Miguel
    Schlenker, Jean-Marc
    MATHEMATICAL INTELLIGENCER, 2021, 43 (02): : 130 - 133
  • [7] Pascal's Triangle and Lucas's Theorem
    Ziobro, Rafal
    FORMALIZED MATHEMATICS, 2024, 32 (01): : 235 - 245
  • [8] A Pascal's theorem for rational normal curves
    Caminata, Alessio
    Schaffler, Luca
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (05) : 1470 - 1485
  • [9] Observations on Desargues' and Pascal's theorem.
    Bottema, O
    MATHEMATISCHE ANNALEN, 1935, 111 : 68 - 70
  • [10] Camera calibration method based on Pascal's theorem
    Wang, Xuechun
    Zhao, Yue
    Yang, Fengli
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2019, 16 (03):