Charge trapping properties of Ge nanocrystals grown via solid-state dewetting

被引:1
|
作者
Jadli, I. [1 ]
Aouassa, M. [1 ]
Johnston, S. [2 ]
Maaref, H. [1 ]
Favre, L. [3 ]
Ronda, A. [3 ]
Berbezier, I. [3 ]
M'ghaieth, R. [1 ]
机构
[1] Monastir Univ, Fac Sci, Dept Phys, Lab Microopto Elect & Nanostruct LMON, Monastir 5019, Tunisia
[2] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO USA
[3] Aix Marseille Univ, CNRS 6137, Inst Mat Microelect Nanosci Provence, Campus St Jerome, F-13397 Marseille 20, France
关键词
Ge NCs; Dewetting; Nonvolatile memory; OXIDATION; CONFINEMENT;
D O I
10.1016/j.jallcom.2018.05.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affects the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (V-FB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [41] Stress-Induced Acceleration and Ordering in Solid-State Dewetting
    Boccardo, Francesco
    Rovaris, Fabrizio
    Tripathi, Ashwani
    Montalenti, Francesco
    Pierre-Louis, Olivier
    PHYSICAL REVIEW LETTERS, 2022, 128 (02)
  • [42] Solid-state dewetting of Pt on (100) SrTiO3
    Atiya, Galit
    Mikhelashvili, Vissarion
    Eisenstein, Gadi
    Kaplan, Wayne D.
    JOURNAL OF MATERIALS SCIENCE, 2014, 49 (11) : 3863 - 3874
  • [43] Trapping DNA near a Solid-State Nanopore
    Vlassarev, Dimitar M.
    Golovchenko, Jene A.
    BIOPHYSICAL JOURNAL, 2012, 103 (02) : 352 - 356
  • [44] MUONS AND MUON TRAPPING BY SOLID-STATE IMPERFECTIONS
    STONEHAM, AM
    NATURE, 1979, 277 (5693) : 173 - 175
  • [45] Solid-state upconversion with CdSe nanocrystals and anthracene
    Tablas, Gabriela
    Simpson, Duane
    Li, Xin
    Huang, Zhiyuan
    Tamayo, Jesse
    Tang, Ming Lee
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [46] Solid-state metasynthesis and characterization of AlN nanocrystals
    Yan Gujun
    Chen Guangde
    Lu Huiming
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2008, 26 (01): : 5 - 8
  • [47] Solid-State and structural characterization of cellulose nanocrystals
    Hamad, Wadood
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [48] PROPERTIES OF MELT-GROWN ZNSE SOLID-STATE RADIATION DETECTORS
    EISSLER, EE
    LYNN, KG
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1995, 42 (04) : 663 - 667
  • [49] Properties of melt-grown ZnSe solid-state radiation detectors
    Eissler, E.E.
    Lynn, K.G.
    IEEE Transactions on Nuclear Science, 1995, 42 (4 pt 1): : 663 - 667
  • [50] Readout of solid-state charge qubits
    Hines, C
    Wang, JB
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 155 - 158