Charge trapping properties of Ge nanocrystals grown via solid-state dewetting

被引:1
|
作者
Jadli, I. [1 ]
Aouassa, M. [1 ]
Johnston, S. [2 ]
Maaref, H. [1 ]
Favre, L. [3 ]
Ronda, A. [3 ]
Berbezier, I. [3 ]
M'ghaieth, R. [1 ]
机构
[1] Monastir Univ, Fac Sci, Dept Phys, Lab Microopto Elect & Nanostruct LMON, Monastir 5019, Tunisia
[2] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO USA
[3] Aix Marseille Univ, CNRS 6137, Inst Mat Microelect Nanosci Provence, Campus St Jerome, F-13397 Marseille 20, France
关键词
Ge NCs; Dewetting; Nonvolatile memory; OXIDATION; CONFINEMENT;
D O I
10.1016/j.jallcom.2018.05.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affects the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (V-FB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [31] SOLID-STATE PROPERTIES OF ORGANOTELLURIUM CHARGE-TRANSFER COMPLEXES
    ENGLER, EM
    TOMKIEWICZ, Y
    LAPLACA, S
    PATEL, VV
    EKLUND, N
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 216 - 216
  • [32] POINT OF ZERO CHARGE AND SOLID-STATE PROPERTIES OF SILVER BROMIDE
    HONIG, EP
    HENGST, JHT
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1969, 31 (04) : 545 - &
  • [33] POINT OF ZERO CHARGE AND SOLID-STATE PROPERTIES OF SILVER BROMIDE
    HONIG, EP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1969, (SEP): : CO20 - &
  • [34] Solid-state dewetting of Pt on (100) SrTiO3
    Galit Atiya
    Vissarion Mikhelashvili
    Gadi Eisenstein
    Wayne D. Kaplan
    Journal of Materials Science, 2014, 49 : 3863 - 3874
  • [35] Solid-state dewetting and island morphologies in strongly anisotropic materials
    Jiang, Wei
    Wang, Yan
    Zhao, Quan
    Srolovitz, David J.
    Bao, Weizhu
    SCRIPTA MATERIALIA, 2016, 115 : 123 - 127
  • [36] Solid-state dewetting of magnetic binary multilayer thin films
    Esterina, Ria
    Liu, X. M.
    Adeyeye, A. O.
    Ross, C. A.
    Choi, W. K.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (14)
  • [37] Cobalt Nanoparticle Arrays made by Templated Solid-State Dewetting
    Oh, Yong-Jun
    Ross, Caroline A.
    Jung, Yeon Sik
    Wang, Yang
    Thompson, Carl V.
    SMALL, 2009, 5 (07) : 860 - 865
  • [38] The role of abnormal grain growth on solid-state dewetting kinetics
    Atiya, Galit
    Chatain, Dominique
    Mikhelashvili, Vissarion
    Eisenstein, Gadi
    Kaplan, Wayne D.
    ACTA MATERIALIA, 2014, 81 : 304 - 314
  • [39] Phase field approach for simulating solid-state dewetting problems
    Jiang, Wei
    Bao, Weizhu
    Thompson, Carl V.
    Srolovitz, David J.
    ACTA MATERIALIA, 2012, 60 (15) : 5578 - 5592
  • [40] Templated Solid-State Dewetting to Controllably Produce Complex Patterns
    Ye, Jongpil
    Thompson, Carl V.
    ADVANCED MATERIALS, 2011, 23 (13) : 1567 - 1571