Intrusion Detection using An Ensemble of Support Vector Machines

被引:5
|
作者
Kumar, G. Kishor [1 ]
Kumar, R. Raja [1 ]
Basha, M. Suleman [1 ]
Reddy, K. Nageswara [1 ]
机构
[1] RGMCET, Dept CSE, Nandyal, India
关键词
Bootstrapping; classification; svm; ensemble techniques; intrusion detection;
D O I
10.26782/jmcms.spl.3/2019.09.00020
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper "an ensemble of Support Vector Machines (SVM)" for network-based intrusion detection. Bootstrapping is applied to derive various training sets from the given training set. Then a SVM is derived for each training set. The decisions of all SVMS is taken and majority voting is considered to classify the given query pattern as a normal or an anomalous one. We have shown the results of applying an ensemble of Support Vector Machines to the two standard data sets ,viz., 1999 KDDCupandCreditcarddatasets.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
  • [41] Infinite ensemble learning with support vector machines
    Lin, HT
    Li, L
    MACHINE LEARNING: ECML 2005, PROCEEDINGS, 2005, 3720 : 242 - 254
  • [42] Ensemble of Support Vector Machines for Heartbeat Classification
    Huang, Huifang
    Hu, Guangshu
    LiZhu
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 1327 - 1330
  • [43] A comparison of support vector machines ensemble for classification
    He, Ling-Min
    Yang, Xiao-Bing
    Lu, Hui-Juan
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3613 - 3617
  • [44] Emotion classification of audio signals using ensemble of support vector machines
    Danisman, Tatter
    Alpkocak, Adil
    PERCEPTION IN MULTIMODAL DIALOGUE SYSTEMS, PROCEEDINGS, 2008, 5078 : 205 - 216
  • [45] Fraud detection using support vector machine ensemble
    Pang, SN
    Kim, D
    Bang, SY
    8TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING, VOLS 1-3, PROCEEDING, 2001, : 1344 - 1349
  • [46] Distinctive feature detection using support vector machines
    Niyogi, P
    Burges, C
    Ramesh, P
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 425 - 428
  • [47] Patient fall detection using support vector machines
    Doukas, Charalampos
    Maglogiannis, Ilias
    Tragas, Philippos
    Liapis, Dimitris
    Yovanof, Gregory
    ARTIFICIAL INTELLIGENCE AND INNOVATIONS 2007: FROM THEORY TO APPLICATIONS, 2007, : 147 - 156
  • [48] Malware Detection Using Perceptrons and Support Vector Machines
    Gavrilut, Dragos
    Cimpoesu, Mihai
    Anton, Dan
    Ciortuz, Liviu
    2009 COMPUTATION WORLD: FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, 2009, : 283 - 288
  • [49] Speech event detection using support vector machines
    Yelamos, P.
    Ramirez, J.
    Gorriz, J. M.
    Puntonet, C. G.
    Segura, J. C.
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 356 - 363
  • [50] HEART ARRHYTHMIA DETECTION USING SUPPORT VECTOR MACHINES
    Khazaee, Ali
    Ebrahimzadeh, Ataollah
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2013, 19 (01): : 1 - 9