Patient fall detection using support vector machines

被引:0
|
作者
Doukas, Charalampos
Maglogiannis, Ilias
Tragas, Philippos
Liapis, Dimitris
Yovanof, Gregory
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel implementation of a patient fall detection system that may be used for patient activity recognition and emergency treatment. Sensors equipped with accelerometers are attached on the body of the patients and transmit patient movement data wirelessly to the monitoring unit. The methodology of support Vector Machines is used for precise classification of the acquired data and determination of a fall emergency event. Then a context-aware server transmits video from patient site properly coded according to both patient and network status. Evaluation results indicate the high accuracy of the classification method and the effectiveness of the proposed implementation.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 50 条
  • [1] Anomaly detection using support vector machines
    Tian, SF
    Yu, J
    Yin, CH
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 592 - 597
  • [2] On signal detection using support vector machines
    Burian, A
    Takala, J
    SCS 2003: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2003, : 609 - 612
  • [3] Incident detection using support vector machines
    Yuan, F
    Cheu, RL
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2003, 11 (3-4) : 309 - 328
  • [4] Corner detection using support vector machines
    Banerjee, M
    Kundu, MK
    Mitra, P
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 819 - +
  • [5] Seismic detection using support vector machines
    Ruano, A. E.
    Madureira, G.
    Barros, O.
    Khosravani, H. R.
    Ruano, M. G.
    Ferreira, P. M.
    NEUROCOMPUTING, 2014, 135 : 273 - 283
  • [6] Intelligent Detection Algorithm for Fall from Height Based on Support Vector Machines
    Chen, Chunchao
    Zhang, Zhiwei
    Cui, Hui
    Li, Jun
    Zhou, Jiajun
    Fan, Zhengyong
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2025, 21 (01): : 71 - 79
  • [7] Distinctive feature detection using support vector machines
    Niyogi, P
    Burges, C
    Ramesh, P
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 425 - 428
  • [8] Intrusion Detection using An Ensemble of Support Vector Machines
    Kumar, G. Kishor
    Kumar, R. Raja
    Basha, M. Suleman
    Reddy, K. Nageswara
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, : 266 - 275
  • [9] Malware Detection Using Perceptrons and Support Vector Machines
    Gavrilut, Dragos
    Cimpoesu, Mihai
    Anton, Dan
    Ciortuz, Liviu
    2009 COMPUTATION WORLD: FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, 2009, : 283 - 288
  • [10] Speech event detection using support vector machines
    Yelamos, P.
    Ramirez, J.
    Gorriz, J. M.
    Puntonet, C. G.
    Segura, J. C.
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 356 - 363